OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13536–13541

Quantitative phase retrieval of a complex-valued object using variable function orders in the fractional Fourier domain

Wen Chen and Xudong Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13536-13541 (2010)
http://dx.doi.org/10.1364/OE.18.013536


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel and effective method to quantitatively recover a complex-valued object from diffraction intensity maps recorded in the fractional Fourier domain. A wavefront modulation is introduced in the wave path, and several diffraction intensity maps are recorded through variable function orders in the fractional Fourier transform. A new phase retrieval algorithm is then proposed, and advantages of the proposed algorithm are also discussed. A proof-of-principle study is presented to show the feasibility and effectiveness of the proposed method.

© 2010 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Image Processing

History
Original Manuscript: May 7, 2010
Revised Manuscript: May 25, 2010
Manuscript Accepted: May 26, 2010
Published: June 8, 2010

Citation
Wen Chen and Xudong Chen, "Quantitative phase retrieval of a complex-valued object using variable function orders in the fractional Fourier domain," Opt. Express 18, 13536-13541 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13536


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, and L. A. Nagahara, “Atomic resolution imaging of a carbon nanotube from diffraction intensities,” Science 300(5624), 1419–1421 (2003). [CrossRef] [PubMed]
  2. M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, “Three-dimensional mapping of a deformation field inside a nanocrystal,” Nature 442(7098), 63–66 (2006). [CrossRef] [PubMed]
  3. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  4. C. J. Mann, L. Yu, C. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005), http://www.opticsinfobase.org/oe/abstract.cfm ? URI = oe-13–22–8693.
  5. W. Chen, C. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009). [CrossRef]
  6. W. Chen, C. Quan, and C. J. Tay, “Measurement of curvature and twist of a deformed object using digital holography,” Appl. Opt. 47(15), 2874–2881 (2008). [CrossRef] [PubMed]
  7. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  8. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  9. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  10. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometer-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999). [CrossRef]
  11. Y. J. Liu, B. Chen, E. R. Li, J. Y. Wang, A. Marcelli, S. W. Wilkins, H. Ming, Y. C. Tian, K. A. Nugent, P. P. Zhu, and Z. Y. Wu, “Phase retrieval in X-ray imaging based on using structured illumination,” Phys. Rev. A 78(2), 023817 (2008). [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  13. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10(10), 2181–2186 (1993). [CrossRef]
  14. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).
  15. M. G. Ertosun, H. Atlı, H. M. Ozaktas, and B. Barshan, “Complex signal recovery from two fractional Fourier transform intensities: order and noise dependence,” Opt. Commun. 244(1-6), 61–70 (2005). [CrossRef]
  16. M. G. Ertosun, H. Atlı, H. M. Ozaktas, and B. Barshan, “Complex signal recovery from multiple fractional Fourier-transform intensities,” Appl. Opt. 44(23), 4902–4908 (2005). [CrossRef] [PubMed]
  17. J. Hua, L. Liu, and G. Li, “Extended fractional Fourier transforms,” J. Opt. Soc. Am. A 14(12), 3316–3322 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited