OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13542–13546

1.54 μm electroluminescence from p-Si anode organic light emitting diode with Bphen: Er(DBM)3phen as emitter and Bphen as electron transport material

F. Wei, Y. Z. Li, G. Z. Ran, and G. G. Qin  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13542-13546 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



1.54 μm Si-anode organic light emitting devices with Er(DBM)3phen: Bphen and Bphen/Bphen:Cs2CO3 as the emissive and electron transport layers (the devices are referred to as the Bphen-based devices) have been investigated. In comparison with the AlQ-based devices with the same structure but with AlQ:Er(DBM)3Phen and AlQ as the emissive and electron transport layers, the maximum EL intensity and maximum power efficiency from the Bphen-based devices increase by a factor of 3 and 2.2, respectively. The optimized p-Si anode resistivity of the Bphen-based device of 10 Ω·cm is significantly lower than that of the AlQ-based device. The NIR EL improvement can be attributed to the energy transfer from Bphen to the Er complex and equilibrium of electron injection from the Sm/Au cathode and hole injection from the p-Si anode at a higher level.

© 2010 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Optical Devices

Original Manuscript: February 16, 2010
Revised Manuscript: April 7, 2010
Manuscript Accepted: April 13, 2010
Published: June 9, 2010

F. Wei, Y. Z. Li, G. Z. Ran, and G. G. Qin, "1.54 μm electroluminescence from p-Si anode organic light emitting diode with Bphen: Er(DBM)3phen as emitter and Bphen as electron transport material," Opt. Express 18, 13542-13546 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Izeddin, A. S. Moskalenko, I. N. Yassievich, M. Fujii, and T. Gregorkiewicz, “Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals,” Phys. Rev. Lett. 97(20), 207401 (2006). [CrossRef] [PubMed]
  2. Y. Yin, K. Sun, W. J. Xu, G. Z. Ran, G. G. Qin, S. M. Wang, and C. Q. Wang, “1.53 μm photo- and electroluminescence from Er3+ in erbium silicate,” J. Phys. Condens. Matter 21(1), 012204 (2009). [CrossRef] [PubMed]
  3. J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005). [CrossRef] [PubMed]
  4. R. J. Curry, W. P. Gillin, A. P. Knights, and R. Gwilliam, “Silicon-based organic light-emitting diode operating at a wavelength of 1.5 μm,” Appl. Phys. Lett. 77(15), 2271–2273 (2000). [CrossRef]
  5. R. J. Curry and W. P. Gillin, “1.54 μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes,” Appl. Phys. Lett. 75(10), 1380–1382 (1999). [CrossRef]
  6. R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87(10), 7589–7591 (2000). [CrossRef]
  7. S. V. Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences,” Chem. Soc. Rev. 39(1), 189–227 (2009). [CrossRef] [PubMed]
  8. W. Q. Zhao, P. F. Wang, G. Z. Ran, G. L. Ma, B. R. Zhang, W. M. Liu, S. K. Wu, L. Dai, and G. G. Qin, “1.54 μm Er3+ electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode,” J. Phys. D Appl. Phys. 39(13), 2711–2714 (2006). [CrossRef]
  9. S.-Y. Chen, T.-Y. Chua, J.-F. Chen, C.-Y. Su, and C. H. Chen, “Stable inverted bottom-emitting organic electroluminescent devices with molecular doping and morphology improvement,” Appl. Phys. Lett. 89(5), 053518 (2006). [CrossRef]
  10. H. Liang, Z. Zheng, B. Chen, Q. Zhang, and H. Ming, “Optical studies of Er(DBM)3Phen containing methyl methacrylate solution and poly(methyl methacrylate) matrix,” Mater. Chem. Phys. 86(2-3), 430–434 (2004). [CrossRef]
  11. Q. Xin, W. L. Li, G. B. Che, W. M. Su, X. Y. Sun, B. Chu, and B. Li, “Improved electroluminescent performances of europium-complex based devices by doping into electron-transporting/hole-blocking host,” Appl. Phys. Lett. 89(22), 223524 (2006). [CrossRef]
  12. L. R. Melby, N. J. Rose, E. Abramson, and J. C. Caris, “Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes,” J. Am. Chem. Soc. 86(23), 5117–5125 (1964). [CrossRef]
  13. G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen, and S. K. Wu, “A top-emission organic light-emitting diode with a silicon anode and an Sm/Au cathode,” Appl. Phys. Lett. 85(22), 5406–5408 (2004). [CrossRef]
  14. W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Passivated p-type silicon: Hole injection tunable anode material for organic light emission,” Appl. Phys. Lett. 92(7), 073303 (2008). [CrossRef]
  15. R. H. C. Tan, J. M. Pearson, Y. Zheng, P. B. Wyatt, and W. P. Gillin, “Evidence for erbium-erbium energy migration in erbium(III) bis(perfluoro-p-tolyl)phosphinate,” Appl. Phys. Lett. 92(10), 103303 (2008). [CrossRef]
  16. Z. Li, J. Yu, L. Zhou, H. Zhang, R. Deng, and Z. Guo, “1.54 μm near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic complex,” Org. Electron. 9(4), 487–494 (2008). [CrossRef]
  17. D. Zhang, W. Li, B. Chu, X. Li, L. Han, J. Zhu, T. Li, D. Bi, D. Yang, F. Yan, H. Liu, and D. Wang, “Sensitized photo- and electroluminescence from Er complexes mixed with Ir complex,” Appl. Phys. Lett. 92(9), 093501 (2008). [CrossRef]
  18. L. N. Sun, H. J. Zhang, L. S. Fu, Q. G. Meng, C. Y. Peng, and J. B. Yu, “A new sol-gel material doped with an Erbium complex and its potential optical-amplification application,” Adv. Funct. Mater. 15(6), 1041–1048 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited