OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13554–13562

Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature

Qiangbing Liang, Baodong Yang, Tiancai Zhang, and Junmin Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13554-13562 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D2 line, while pumping laser is scanned across cesium D1 or D2 lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

© 2010 OSA

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(020.6580) Atomic and molecular physics : Stark effect
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Atomic and Molecular Physics

Original Manuscript: April 2, 2010
Revised Manuscript: May 16, 2010
Manuscript Accepted: May 25, 2010
Published: June 9, 2010

Qiangbing Liang, Baodong Yang, Tiancai Zhang, and Junmin Wang, "Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature," Opt. Express 18, 13554-13562 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004). [CrossRef]
  2. B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009). [CrossRef]
  3. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977). [CrossRef]
  4. C. Wieman and T. W. Hansch, “Precision measurement of the 1S Lamb shift and of the 1S-2S isotope shift of hydrogen and deutrium,” Phys. Rev. A 22(1), 192–205 (1980). [CrossRef]
  5. S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007). [CrossRef]
  6. U. D. Rapol and V. Natarajan, “Doppler-free spectroscopy in driven three-level systems,” Eur. Phys. J. D 28(3), 317–322 (2004). [CrossRef]
  7. Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006). [CrossRef]
  8. S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. 24(Part 1, No. 1), 1–7 (1985). [CrossRef]
  9. A. Banerjee and V. Natarajan, “Saturated-absorption spectroscopy: eliminating crossover resonances by use of copropagating beams,” Opt. Lett. 28(20), 1912–1914 (2003). [CrossRef] [PubMed]
  10. S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).
  11. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995). [CrossRef] [PubMed]
  12. B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010). [CrossRef]
  13. J. M. Zhao, X. B. Zhu, L. J. Zhang, Z. G. Feng, C. Y. Li, and S. T. Jia, “High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency,” Opt. Express 17(18), 15821–15826 (2009). [CrossRef] [PubMed]
  14. Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995). [CrossRef] [PubMed]
  15. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003). [CrossRef]
  16. M. Mitsunaga, T. Mukai, K. Watanabe, and T. Mukai, “Dressed-atom spectroscopy of cold Cs atoms,” J. Opt. Soc. Am. B 13(12), 2696–2700 (1996). [CrossRef]
  17. R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007). [CrossRef]
  18. E. de Carlos Lopez and J. M. Lopez Romero, “Laser frequency stabilization using fm optical pumping spectroscopy,” Rev. Mex. Fis. 54, 222–228 (2008).
  19. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions:basic processes and applications (Wiley & New York, 1992), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited