OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13586–13592

High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator

Xiaodong He, Peng Xu, Jin Wang, and Mingsheng Zhan  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13586-13592 (2010)
http://dx.doi.org/10.1364/OE.18.013586


View Full Text Article

Enhanced HTML    Acrobat PDF (1207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated trapping two neutral 87Rb atoms in a two site optical ring lattice generated by reflecting a single laser beam from a computer controlled spatial light modulator directly. The ring lattice was transformed into a Gaussian trap by dynamically displaying the holograms animation movie on the modulator. The trapped atoms follow the evolution of traps and move into the same microscopic dipole trap at the end. The detected success rate of this manipulation is larger than 90%. Under imposing the near resonance light, we observed strong light-induce collision between two atoms.

© 2010 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(090.2890) Holography : Holographic optical elements
(270.5585) Quantum optics : Quantum information and processing
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: May 11, 2010
Revised Manuscript: June 5, 2010
Manuscript Accepted: June 6, 2010
Published: June 9, 2010

Citation
Xiaodong He, Peng Xu, Jin Wang, and Mingsheng Zhan, "High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator," Opt. Express 18, 13586-13592 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Frese, B. Uberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede, “Single atoms in an optical dipole trap: Towards a deterministic source of cold atoms,” Phys. Rev. Lett. 85, 3777 (2000). [CrossRef] [PubMed]
  2. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001). [CrossRef] [PubMed]
  3. D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, and D. Meschede, “Neutral Atom Quantum Register,” Phys. Rev. Lett. 93, 150501 (2004). [CrossRef] [PubMed]
  4. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Forster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442, 151 (2006). [CrossRef] [PubMed]
  5. J. Beugnon, C. Tuchendler, H. Marion, A. Gaetan, Y. Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones, G. Messin, A. Browaeys, and P. Grangier, “Two-dimensional transport and transfer of a single atomic qubit in optical tweezers,” Nat. Phys. 3, 696–699 (2007). [CrossRef]
  6. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999). [CrossRef]
  7. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps,” Phys. Rev. A 61, 022304 (2000). [CrossRef]
  8. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, and M. D. Lukin, “Fast Quantum Gates for Neutral Atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000). [CrossRef] [PubMed]
  9. L. Isenhower, E. Urban, T. Henage, X. L. Zhang, A. T. Gill, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010). [CrossRef] [PubMed]
  10. T. Wilk, A. Gätan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of Two Individual Neutral Atoms Using Rydberg Blockade,” Phys. Rev. Lett. 104, 010502 (2010). [CrossRef] [PubMed]
  11. O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hansch, and I. Bloch, “Coherent transport of neutral atoms in spin-dependent optical lattice potentials,” Phys. Rev. Lett. 91, 010407 (2003). [CrossRef] [PubMed]
  12. A. Widera, F. Gerbier, S. Folling, T. Gericke, O. Mandel, and I. Bloch, “Coherent Collisional Spin Dynamics in Optical Lattices,” Phys. Rev. Lett. 95, 190405 (2005). [CrossRef] [PubMed]
  13. T. Volz, N. Syassen, D. M. Bauer, E. Hansis, S. Dürr, and G. Rempe, “Preparation of a quantum state with one molecule at each site of an optical lattice,” Nat. Phys. 2, 692–695 (2006). [CrossRef]
  14. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, S. Reick, and A. Rauschenbeutel, “Inserting Two Atoms into a Single Optical Micropotential,” Phys. Rev. Lett. 97, 243003 (2006). [CrossRef]
  15. X. D. He, P. Xu, J. Wang, and M. S. Zhan, “Rotating single atoms in a ring lattice generated by a spatial light modulator,” Opt. Express 17, 21007–21014 (2009). [CrossRef] [PubMed]
  16. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  17. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel Optical Trap of Atoms with a Doughnut Beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  18. M. Stutz, S. Groblacher, T. Jennewein, and A. Zeilinger, “How to create and detect N-dimensional entangled photons with an active phase hologram,” Appl. Phys. Lett. 90, 261114 (2007). [CrossRef]
  19. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” Pure Appl. Opt. 6, 259 (2004). [CrossRef]
  20. G. Anzolin, F. Tamburini, A. Bianchini, and C. Barbieri, “Method to measure off-axis displacements based on the analysis of the intensity distribution of a vortex beam,” Phys. Rev. A 79, 033845 (2009). [CrossRef]
  21. J. Wang, L. Zhou, R. B. Li, M. Liu, and M. S. Zhan, “Cold atom interferometers and their applications in precision measurements,” Front. Phys. China 4, 179–189 (2009). [CrossRef]
  22. K. Li, L. Deng, E. W. Hagley, M. G. Payne, and M. S. Zhan, “Matter-wave self-imaging by atomic center-of-mass motion induced interference,” Phys. Rev. Lett. 101, 250401 (2008). [CrossRef] [PubMed]
  23. C. Tuchendler, A. M. Lance, A. Browaeys, Y. R. P. Sortais, and P. Grangier, “Energy distribution and cooling of a single atom in an optical tweezer,” Phys. Rev. A 78, 033425 (2008). [CrossRef]
  24. A. Gallagher, and D. E. Pritchard, “Exoergic collisions of cold Na*-Na,” Phys. Rev. Lett. 63, 957–960 (1989). [CrossRef] [PubMed]
  25. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1 (1999). [CrossRef]
  26. C. D. Wallace, T. P. Dinneen, K. Y. N. Tan, T. T. Grove, and P. L. Gould, “Isotopic difference in trap loss collisions of laser cooled rubidium atoms,” Phys. Rev. Lett. 69, 897–900 (1992). [CrossRef] [PubMed]
  27. A. R. Gorges, N. S. Bingham, M. K. DeAngelo, M. S. Hamilton, and J. L. Roberts, “Light-assisted collisional loss in an Rb-85/87 ultracold optical trap,” Phys. Rev. A 78, 033420 (2008). [CrossRef]
  28. T. A. Johnson, E. Urban, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Rabi Oscillations between Ground and Rydberg States with Dipole-Dipole Atomic Interactions,” Phys. Rev. Lett. 100, 113003 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited