OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13745–13753

Proportional enlargement of movement by using an optically driven multi-link system with an elastic joint

Yu Jin Jeong, Tae Woo Lim, Yong Son, Dong-Yol Yang, Hong-Jin Kong, and Kwang-Sup Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13745-13753 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diverse movements using optical manipulation have been introduced. These are generally performed in the focal region of the laser beam. To achieve a wider range of movements based on precise motion transformation, an effective method for optical manipulation that overcomes the important obstacles such as small optical trapping forces, friction, and the viscosity of fluids is required. A multi-link system with an elastic joint is introduced that provides precise motion transformation and amplification. By considering the physical properties of the structure and the optical trapping force, an elastic micron-scale joint with the simple shape of a thin plate was designed. As a further example of a multi-link system with an elastic joint, a double 4-link system for motion enlargement was designed and fabricated. By performing experimental evaluations of the fabricated structures, it was confirmed that multi-link systems with an elastic joint were effective tools for precise motion transformation through optical manipulation.

© 2010 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(230.4000) Optical devices : Microstructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Devices

Original Manuscript: March 22, 2010
Revised Manuscript: May 21, 2010
Manuscript Accepted: May 21, 2010
Published: June 11, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Yu Jin Jeong, Tae Woo Lim, Yong Son, Dong-Yol Yang, Hong-Jin Kong, and Kwang-Sup Lee, "Proportional enlargement of movement by using an optically driven multi-link system with an elastic joint," Opt. Express 18, 13745-13753 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82(6), 2773–2779 (1997). [CrossRef]
  2. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 395(6702), 621–621 (1998). [CrossRef]
  3. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstorp, “Optically driven micromachine elements,” Appl. Phys. Lett. 78(4), 547–549 (2001). [CrossRef]
  4. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001). [CrossRef]
  5. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002). [CrossRef]
  6. E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11(2), 140–145 (2001). [CrossRef]
  7. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001). [CrossRef] [PubMed]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  9. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006). [CrossRef] [PubMed]
  10. G. Knöner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Integrated optomechanical microelements,” Opt. Express 15(9), 5521–5530 (2007). [CrossRef] [PubMed]
  11. A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002). [CrossRef] [PubMed]
  12. A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002). [CrossRef]
  13. C. H. Nam, D. Lee, D. Hong, and J. Chung, “Manipulation of nano devices with optical tweezers,” Int. J. Precis. Eng. Man. 10(5), 45–51 (2009). [CrossRef]
  14. Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima, “Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques,” Opt. Express 17(26), 24102–24111 (2009). [CrossRef]
  15. S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003). [CrossRef]
  16. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003). [CrossRef]
  17. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006). [CrossRef]
  18. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009). [CrossRef] [PubMed]
  19. C. Basdogan, A. Kiraz, I. Bukusoglu, A. Varol, and S. Doğanay, “Haptic guidance for improved task performance in steering microparticles with optical tweezers,” Opt. Express 15(18), 11616–11621 (2007). [CrossRef] [PubMed]
  20. C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Régnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17(12), 10259–10264 (2009). [CrossRef] [PubMed]
  21. T. Asavei, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins,” J. Opt. A, Pure Appl. Opt. 11(3), 1–7 (2009). [CrossRef]
  22. S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,” Sens. Actuators A Phys. 100(1), 70–76 (2002). [CrossRef]
  23. T. W. Lim, Y. Son, D. Y. Yang, H. J. Kong, K. S. Lee, and S. H. Park, “Highly effective three-dimensional large-scale microfabrication using a continuous scanning method,” Appl. Phys. A: Mater. 92(3), 541–545 (2008). [CrossRef]
  24. S. H. Park, T. W. Lim, D. Y. Yang, N. C. Cho, and K. S. Lee, “Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique,” Appl. Phys. Lett. 89(17), 173133 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited