OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13813–13828

Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique

Alexandre Dupuis, Anna Mazhorova, Frédéric Désévédavy, Mathieu Rozé, and Maksim Skorobogatiy  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13813-13828 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3762 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report two novel fabrication techniques, as well as THz spectral transmission and propagation loss measurements of subwavelength plastic wires with highly porous (up to 86%) and non-porous transverse geometries. The two fabrication techniques we describe are based on the microstructured molding approach. In one technique the mold is made completely from silica by stacking and fusing silica capillaries to the bottom of a silica ampoule. The melted material is then poured into the silica mold to cast the microstructured preform. Another approach uses a microstructured mold made of a sacrificial plastic which is co-drawn with a cast preform. Material from the sacrificial mold is then dissolved after fiber drawing. We also describe a novel THz-TDS setup with an easily adjustable optical path length, designed to perform cutback measurements using THz fibers of up to 50 cm in length. We find that while both porous and non-porous subwavelength fibers of the same outside diameter have low propagation losses (α ≤ 0.02 cm−1), the porous fibers exhibit a much wider spectral transmission window and enable transmission at higher frequencies compared to the non-porous fibers.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 21, 2010
Revised Manuscript: May 31, 2010
Manuscript Accepted: June 1, 2010
Published: June 11, 2010

Alexandre Dupuis, Anna Mazhorova, Frédéric Désévédavy, Mathieu Rozé, and Maksim Skorobogatiy, "Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique," Opt. Express 18, 13813-13828 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  2. K. Wang, and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef] [PubMed]
  3. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 306–308 (2006). [CrossRef]
  4. Q. Cao, and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005). [CrossRef] [PubMed]
  5. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  6. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006). [CrossRef] [PubMed]
  7. V. Astley, J. Scheiman, R. Mendis, and D. M. Mittleman, “Bending and coupling losses in terahertz wire waveguides,” Opt. Lett. 35(4), 53–555 (2010). [CrossRef]
  8. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009). [CrossRef]
  9. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007). [CrossRef] [PubMed]
  10. J.-Y. Lu, C.-C. Kuo, C.-M. Chiu, H.-W. Chen, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “THz interferometric imaging using subwavelength plastic fiber based THz endoscopes,” Opt. Express 16, 2494–2501 (2008). [CrossRef] [PubMed]
  11. J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92, 084102 (2008). [CrossRef]
  12. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012–8028 (2009). [CrossRef] [PubMed]
  13. B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009). [CrossRef] [PubMed]
  14. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009). [CrossRef] [PubMed]
  15. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008). [CrossRef]
  16. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  17. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Munro, “Porous Fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  18. R. Mendis, and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846 (2001). [CrossRef]
  19. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  20. C. Zhao, M. Wu, D. Fan, and S. Wen, “Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,” Opt. Commun. 281, 11291133 (2008). [CrossRef]
  21. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009). [CrossRef] [PubMed]
  22. S. Atakaramians, S. Afshar Vihad, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053 (2009). [CrossRef] [PubMed]
  23. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-Loss Asymptotically Single-Mode Propagation in Large Core OmniGuide Fibers,” Opt. Express 9, 748–779 (2001). [CrossRef] [PubMed]
  24. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42(25), (2006). [CrossRef]
  25. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited