OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13829–13835

Efficient coupling of single photons to single plasmons

M. Celebrano, R. Lettow, P. Kukura, M. Agio, A. Renn, S. Götzinger, and V. Sandoghdar  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13829-13835 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate strong coupling of single photons emitted by individual molecules at cryogenic and ambient conditions to individual nanoparticles. We provide images obtained both in transmission and reflection, where an efficiency greater than 55% was achieved in converting incident narrow-band photons to plasmon-polaritons (plasmons) of a silver nanoparticle. Our work paves the way to spectroscopy and microscopy of nano-objects with sub-shot noise beams of light and to triggered generation of single plasmons and electrons in a well-controlled manner.

© 2010 OSA

OCIS Codes
(040.5570) Detectors : Quantum detectors
(290.2200) Scattering : Extinction
(100.3175) Image processing : Interferometric imaging
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Quantum Optics

Original Manuscript: April 20, 2010
Revised Manuscript: May 29, 2010
Manuscript Accepted: June 7, 2010
Published: June 11, 2010

M. Celebrano, R. Lettow, P. Kukura, M. Agio, A. Renn, S. Götzinger, and V. Sandoghdar, "Efficient coupling of single photons to single plasmons," Opt. Express 18, 13829-13835 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Zumofen, N. M. Mojarad, V. Sandoghdar, and M. Agio, “Perfect reflection of light by an oscillating dipole,” Phys. Rev. Lett. 101, 180404 (2008). [CrossRef] [PubMed]
  2. N. Mojarad, G. Zumofen, V. Sandoghdar, and M. Agio, “Metal nanoparticles in strongly confined beams: transmission, reflection and absorption,” J. Euro. Opt. Soc. 4, 09014 (2009). [CrossRef]
  3. A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, and M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7, 2892–2896 (2007). [CrossRef] [PubMed]
  4. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008). [CrossRef]
  5. M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without a cavity,” Nat. Phys. 4, 924 (2008). [CrossRef]
  6. J. Eschner, C. Raab, F. Schmidt-Kaler, and R. Blatt, “Light interference from single atoms and their mirror images,” Nature 413, 495–498 (2001). [CrossRef] [PubMed]
  7. G. Rempe, T. Fischer, M. Hennrich, A. Kuhn, P. Maunz, P. Pinkse, and T. Puppe, “Single atoms and single photons in cavity quantum electrodynamics,” in “Coherence and Quantum Optics VIII,”, N. P. Bigelow, J. H. Eberly, C. R. Stroud, and I. A. Walmsley, eds. (Kluwer Academic / Plenum Publishers, New York (2003), 2007), pp. 241–248.
  8. M. I. Kolobov, “The spatial behavior of nonclassical light,” Rev. Mod. Phys. 71, 1539–1589 (1999). [CrossRef]
  9. N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Matre, H.-A. Bachor, and C. Fabre, “Surpassing the standard quantum limit for optical imaging using nonclassical multimode light,” Phys. Rev. Lett. 88, 203601 (2002). [CrossRef] [PubMed]
  10. L. Lugiato, A. Gatti, and E. Brambilla, “Quantum imaging,” J. Opt. B 4, S176–S183 (2002).
  11. B. Lounis, and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005). [CrossRef]
  12. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef] [PubMed]
  13. R. W. Heeres, S. N. Dorenbos, B. Koene, G. S. Solomon, L. P. Kouwenhoven, and V. Zwiller, “On-chip single plasmon detection,” Nano Lett. 10, 661–664 (2010). [CrossRef] [PubMed]
  14. M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101, 190504 (2008). [CrossRef] [PubMed]
  15. R. Lettow, V. Ahtee, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Realization of two Fourier limited solid-state single-photon sources,” Opt. Express 15, 15842–15847 (2007). [CrossRef] [PubMed]
  16. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  17. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, “Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum,” Opt. Lett. 28, 1686–1688 (2003). [CrossRef] [PubMed]
  18. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy,” Phys. Rev. Lett. 93, 037401 (2004). [CrossRef] [PubMed]
  19. M. Meier, and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983). [CrossRef] [PubMed]
  20. B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 235, 358–379 (1959).
  21. G. I. Taylor, Proc. Camb. Philos. Soc. 15, 114 (1909).
  22. L. M. Davis, “Interference between resolvable wavelengths with single-photon resolved detection,” Phys. Rev. Lett. 60, 1258–1261 (1988). [CrossRef] [PubMed]
  23. V. Ahtee, R. Lettow, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Molecules as sources for indistinguishable single photons,” J. Mod. Opt. 56, 161–166 (2009). [CrossRef]
  24. G. Wrigge, J. Hwang, I. Gerhardt, G. Zumofen, and V. Sandoghdar, “Exploring the limits of single emitter detection in fluorescence and extinction,” Opt. Express 16, 17358–17365 (2008). [CrossRef] [PubMed]
  25. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999). [CrossRef]
  26. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387, 490–495 (2004). [CrossRef]
  27. B. Lounis, and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000). [CrossRef] [PubMed]
  28. This value is larger than that expected from a simple estimate of the diffraction limit because of 1) the inherently larger FWHM that is obtained in transmission measurements and 2) the lower effective numerical aperture due a smaller beam diameter in this experiment.
  29. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett. 8, 2346–2350 (2007). [CrossRef]
  30. A. L. Falk, F. H. L. Koppens, C. Yu, K. Kang, N. P. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near field electrical detection of optical plasmons and single plasmon sources,” Nat. Phys. 5, 475–479 (2009). [CrossRef]
  31. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, “Imaging a single quantum dot when it is dark,” Nano Lett. 9, 926–929 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited