OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13951–13963

Intracavity parametric generation of nanosecond terahertz radiation using quasi-phase-matching

David A Walsh, Peter G Browne, Malcolm H Dunn, and Cameron F Rae  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13951-13963 (2010)
http://dx.doi.org/10.1364/OE.18.013951


View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the use of quasi-phase-matching techniques based on periodically-poled MgO:LiNbO3 for the generation of nanosecond duration pulses of terahertz radiation in intracavity optical parametric oscillators. Multiple idler-waves are generated with temporal studies indicating that the initiating process is the expected parametric down-conversion, but followed by cascaded difference frequency generation. A number of grating geometries have been explored, revealing the presence of dual solutions for the quasi-phase-matching process in the general case. Choice of grating parameters so as to minimize oscillation threshold while simultaneously ensuring effective extraction of the THz radiation is considered.

© 2010 OSA

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.6080) Optical devices : Sources

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 17, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 22, 2010
Published: June 14, 2010

Citation
David A Walsh, Peter G Browne, Malcolm H Dunn, and Cameron F Rae, "Intracavity parametric generation of nanosecond terahertz radiation using quasi-phase-matching," Opt. Express 18, 13951-13963 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008). [CrossRef]
  2. H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968). [CrossRef]
  3. J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969). [CrossRef]
  4. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975). [CrossRef]
  5. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996). [CrossRef]
  6. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000). [CrossRef]
  7. K. Imai, K. Kawase, J.-i. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78(8), 1026–1028 (2001). [CrossRef]
  8. K. Kawase, J.-i. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001). [CrossRef]
  9. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  10. S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J.-i. Shikata, H. Ito, C. Otani, and K. Kawase, “Output power enhancement of a palmtop terahertz-wave parametric generator,” Appl. Opt. 46(1), 117–123 (2007). [CrossRef]
  11. S. Hayashi, T. Shibuya, H. Sakai, H. Kan, T. Taira, Y. Ogawa, C. Otani, and K. Kawase, “Tunable Terahertz-Wave Parametric Generation Pumped by Microchip Nd:YAG Laser,” in Advanced Solid-State Photonics(Optical Society of America, 2008), p. MC30.
  12. T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006). [CrossRef] [PubMed]
  13. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008). [CrossRef]
  14. D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009). [CrossRef]
  15. J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007). [CrossRef]
  16. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007). [CrossRef]
  17. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001). [CrossRef]
  18. C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, R. Beigang, and Y. Avetisyan, “Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate,” Opt. Express 8(9), 497–502 (2001). [CrossRef] [PubMed]
  19. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002). [CrossRef]
  20. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006). [CrossRef] [PubMed]
  21. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008). [CrossRef]
  22. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009). [CrossRef] [PubMed]
  23. D. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO:LiNbO3 With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009). [CrossRef]
  24. D. J. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009). [CrossRef] [PubMed]
  25. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc. London, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited