OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14004–14011

Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe

Yuyan Wang, Yu-Yen Huang, and Xiaojing Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14004-14011 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2827 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design nanogratings consisting of concentric plasmonic resonance grooves on the metallic sidewalls of near-field scanning probe aperture to increase the power throughput without losing the imaging resolution. Nanograting tip design involves choosing the proper pitch length and the cut location of grooves. Four different nanograting designs are evaluated, as compared with standard single aperture pyramidal near-field scanning probe without grating patterns. We show that, by adding nano-grooves at the location of electromagnetic field intensity-maximum along interface and with the pitch period matching the surface plasmon wavelength, the power throughput can be greatly increased by at least a factor of 530 at 405nm UV wavelength with 100nm diameter aperture probe.

© 2010 OSA

OCIS Codes
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: March 26, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: June 1, 2010
Published: June 15, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Yuyan Wang, Yu-Yen Huang, and Xiaojing Zhang, "Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe," Opt. Express 18, 14004-14011 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  5. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  6. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  7. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007). [CrossRef]
  8. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-field localization in plasmonic superfocusing: a nanoemitter on a tip,” Nano Lett. 10(2), 592–596 (2010). [CrossRef] [PubMed]
  9. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  10. F. I. Baida and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4(1), 51–59 (2009). [CrossRef]
  11. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  13. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  14. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006). [CrossRef] [PubMed]
  15. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008). [CrossRef]
  16. Y. Wang, Y. Y. Huang, K. Hoshino, Y. Shrestha, D. Giese, X. J. Zhang, “Plasmonic nanoprobe integrated with near-field canning microscope”, IEEE Optical MEMS and Nanophotonics, Clearwater Beach, Florida, USA. (17–20) Aug. 2009.
  17. M. Labardi, M. Zavelani-Rossi, D. Polli, G. Cerullo, M. Allegrini, S. De Silvestri, and O. Svelto, “Characterization of femtosecond light pules coupled to hollow-pyramid near-field probes: Localization in space and time,” Appl. Phys. Lett. 86(3), 031105 (2005). [CrossRef]
  18. D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B 149(3), 242–246 (2008). [CrossRef]
  19. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010). [CrossRef] [PubMed]
  20. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991). [CrossRef] [PubMed]
  21. D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997). [CrossRef]
  22. Y. Y. Huang, Y. Wang, K. Hoshino, D. Giese, Y. Shrestha, and X. J. Zhang, “Fabrication and scanning control of nanoprobe for NSOM applications,” Proc. SPIE 7591, 75910C1–9 (2010).
  23. E. D. Palik, and G. Ghosh, Handbook of Optical Constants of Solids, E.D. Palik, ed., (Academic, 1985).
  24. Lumerical Solutions, Inc, www.lumerical.com .
  25. K. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  26. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009). [CrossRef] [PubMed]
  27. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited