OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14024–14030

A PbS quantum dots fiber amplifier excited by evanescent wave

Fufei Pang, Xiaolan Sun, Hairun Guo, Jiwen Yan, Jing Wang, Xianglong Zeng, Zhenyi Chen, and Tingyun Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14024-14030 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A PbS quantum dots (QDs) fiber amplifier was fabricated and characterized by using a standard single mode fiber (SMF) coupler. The fiber amplifier was fabricated by coating PbS QDs doped sol-gel films onto the tapered SMF coupler. Through the evanescent wave, the PbS quantum dots were excited. With a 980 nm wavelength laser diode (LD) as the pump, the fiber amplifier exhibited a wide band optical gain at 1310 nm with the largest gain as high as 10 dB. The amplified spontaneous emission (ASE) noise is very low resulted from the amplifier configuration of evanescent wave exciting, which is critical to improve the signal-to-noise ratio. Therefore the proposed fiber amplifier will find great potential in the fiber-optic communication systems.

© 2010 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4510) Fiber optics and optical communications : Optical communications
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: March 9, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: June 3, 2010
Published: June 15, 2010

Fufei Pang, Xiaolan Sun, Hairun Guo, Jiwen Yan, Jing Wang, Xianglong Zeng, Zhenyi Chen, and Tingyun Wang, "A PbS quantum dots fiber amplifier excited by evanescent wave," Opt. Express 18, 14024-14030 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000). [CrossRef] [PubMed]
  2. M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009). [CrossRef]
  3. A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).
  4. J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003). [CrossRef]
  5. P. Bhattacharya and Z. Mi, “Quantum-Dot Optoelectronic Devices,” Proc. IEEE 95(9), 1723–1740 (2007). [CrossRef]
  6. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007). [CrossRef]
  7. T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009). [CrossRef]
  8. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009). [CrossRef]
  9. O. Qasaimeh, “Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Lightwave Technol. 27(12), 1978–1984 (2009). [CrossRef]
  10. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005). [CrossRef]
  11. K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999). [CrossRef]
  12. J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004). [CrossRef]
  13. P. R. Watekar, A. Lin, S. Ju, and W. T. Han, “1537 nm Emission Upon 980 nm Pumping in PbSe Quantum Dots Doped Optical Fiber,” OFC, OWO1 (2008).
  14. S. Kawanishi, T. Komukai, M. Ohmori and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” CLEO, CTuII4(2007).
  15. H. S. Mackenzie and F. P. Payne, “Evanescent field Amplification in a Tapered Single-Mode Optical Fiber,” Electron. Lett. 26(2), 130–132 (1990). [CrossRef]
  16. V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Opt. Lett. 30(2), 171–173 (2005). [CrossRef] [PubMed]
  17. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003). [CrossRef]
  18. F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007). [CrossRef]
  19. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987). [CrossRef]
  20. C. Jiang, “Ultrabroadband Gain Characteristics of a Quantum-Dot-Doped Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 140–144 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited