OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14129–14143

Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers

Arthur James Lowery  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14129-14143 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



All-optical OFDM uses optical techniques to multiplex together several modulated lightsources, to form a band of subcarriers that can be considered as one wavelength channel. The subcarriers have a frequency separation equal to their modulation rate. This means that they can be demultiplexed without any cross-talk between them, usually with a Discrete Fourier Transform (DFT), implemented optically or electronically. Previous work has proposed networks of optical couplers to implement the DFT. This work shows that the topology of an Arrayed Grating Waveguide Router (AWGR) can be used to perform the demultiplexing, and that the AWGR can be considered as a serial-to-parallel converter followed by a DFT. The simulations show that the electrical bandwidths of the transmitter and receiver are critical to orthogonal demultiplexing, and give insight into how crosstalk occurs in all-optical OFDM and coherent-WDM systems using waveforms and spectra along the system. Design specifications for the AWGR are developed, and show that non-uniformity will lead to crosstalk. The compensation of dispersion and the applications of these techniques to ‘coherent WDM’ systems using Non-Return to Zero modulation is discussed.

© 2010 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 29, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 9, 2010
Published: June 16, 2010

Arthur James Lowery, "Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers," Opt. Express 18, 14129-14143 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. B. Weinstein, “The history of orthogonal frequency-division multiplexing [History of Communications],” IEEE Commun. Mag. 47(11), 26–35 (2009). [CrossRef]
  2. R. W. Chang, “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell Syst. Tech. J. 45, 1775–1796 (1966).
  3. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006). [CrossRef] [PubMed]
  4. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006). [CrossRef]
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, D. van den Borne, and H. Tanaka, “Optical OFDM - A candidate for future long-haul optical transmission systems,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2008), paper OMU3.
  6. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006). [CrossRef] [PubMed]
  7. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]
  8. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005). [CrossRef]
  9. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009). [CrossRef] [PubMed]
  10. K. Yonenaga, A. Sano, E. Yamazaki, F. Inuzuka, Y. Miyamoto, A. Takada, and T. Yamada, “100 Gbit/s all-optical OFDM transmission using 4 x 25 Gbit/s optical duobinary signals with phase-controlled optical sub-carriers,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2008), paper JThA48.
  11. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, R. Kudo, K. Ishihara, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, H. Yamazaki, S. Kamei, and H. Ishii, “13.4-Tb/s (134x111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 3,600 km of SMF with 19-ps average PMD,” in 34th European Conference on Optical Communication (ECOC) (2008), paper Th.3.E.1.
  12. K. Takiguchi, M. Oguma, T. Shibata, and T. Takahashi, “Optical OFDM demultiplexer using Silica PLC based optical FFT circuit,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OWO3.
  13. K. Lee, C. T. D. Thai, and J.-K. K. Rhee, “All optical discrete Fourier transform processor for 100 Gbps OFDM transmission,” Opt. Express 16(6), 4023–4028 (2008). [CrossRef] [PubMed]
  14. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in Conference on Optical Fiber Communication, OFC, (Anaheim, CA, 2002), paper ThD1, pp. 401–402.
  15. S. Kumar and D. Yang, “Optical implementation of orthogonal frequency-division multiplexing using time lenses,” Opt. Lett. 33(17), 2002–2004 (2008). [CrossRef] [PubMed]
  16. R. Llorente, J. H. Lee, R. Clavero, M. Ibsen, and J. Marti, “Orthogonal wavelength-division-multiplexing technique feasibility evaluation,” J. Lightwave Technol. 23(3), 1145–1151 (2005). [CrossRef]
  17. H. Chen, M. Chen, and S. Xie, “All-optical sampling orthogonal frequency-division multiplexing scheme for high-speed transmission system,” J. Lightwave Technol. 27(21), 4848–4854 (2009). [CrossRef]
  18. Y.-K. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, “Dual-polarization 2x2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OTuM4.
  19. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965). [CrossRef]
  20. K. Tanaka and S. Norimatsu, “Transmission performance of WDM/OFDM hybrid systems over optical fibers,” Electron. Commun. Japan Part 90(10), 14–24 (2007). [CrossRef]
  21. K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “PLC-based eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper OThB4.
  22. D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben-Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel optical fast Fourier transform scheme enabling real-time OFDM at 392 Gbit/s and beyond,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper OWW3.
  23. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper PDPC1.
  24. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]
  25. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991). [CrossRef]
  26. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  27. A. D. Ellis, F. C. G. Gunning, B. Cuenot, T. C. Healy, and E. Pincemin, “Towards 1TbE using Coherent WDM,” in Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT, (2008), pp. 1–4.
  28. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008). [CrossRef] [PubMed]
  29. H. Bulow, F. Buchali, and A. Klekamp, “Electronic Dispersion Compensation,” J. Lightwave Technol. 26(1), 158–167 (2008). [CrossRef]
  30. Q. Yang, W. Shieh, and Y. Ma, “Guard-band influence on orthogonal-band-multiplexed coherent optical OFDM,” Opt. Lett. 33(19), 2239–2241 (2008). [CrossRef] [PubMed]
  31. S. B. Weinstein and P. M. Ebert, “Data transmission frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol. 19(5), 628–634 (1971). [CrossRef]
  32. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A signal processing approach (Wiley, New York, 1999).
  33. K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992). [CrossRef]
  34. L. Soldano, F. Veerman, M. K. Smit, B. Verbeek, and E. Pennings, “Multimode interference couplers,” in Integrated Photonics Research, (Monteray, CA, 1991), paper TuD1.
  35. L. O. Lierstuen and A. Sudbo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7(9), 1034–1036 (1995). [CrossRef]
  36. H. G. Beutler, “The theory of the concave grating,” J. Opt. Soc. Am. 35(5), 311–350 (1945). [CrossRef]
  37. K. R. Poguntke and J. B. D. Soole, “Design of a multistripe array grating integrated cavity (MAGIC) laser,” J. Lightwave Technol. 11(12), 2191–2200 (1993). [CrossRef]
  38. A. Gholipour and R. Faraji-Dana, “Nonuniform arrayed waveguide gratings for flat-top passband transfer function,” J. Lightwave Technol. 25(12), 3678–3685 (2007). [CrossRef]
  39. S. L. Jansen, I. Morita, and H. Tanaka, “16x52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” in ECOC 2007, (Berlin, 2007), paper PD 1.3.
  40. A. D. Ellis, “Modulation formats which approach the Shannon limit,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OMM4.
  41. A. D. Ellis, F. C. G. Gunning, and T. Healy, “Coherent WDM: the achievement of high information spectral density through phase control within the transmitter,” in Conference on Optical Fiber Communication, OFC, (Anaheim, CA, 2006), paper OThR4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited