OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 14245–14250

Miniaturized fiber taper reflective interferometer for high temperature measurement

Jun-long Kou, Jing Feng, Liang Ye, Fei Xu, and Yan-qing Lu  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 14245-14250 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an ultra-small all-silica high temperature sensor based on a reflective Fabry-Perot modal interferometer (FPMI). Our FPMI is made of a micro-cavity (~4.4 μm) directly fabricated into a fiber taper probe less than 10 μm in diameter. Its sensing head is a miniaturized single mode-multimode fiber configuration without splicing. The sensing mechanism of FPMI is the interference among reflected fundamental mode and excited high-order modes at the end-faces. Its temperature sensitivity is ~20 pm/°C near the wavelength of 1550 nm. This kind of sensor can work in harsh environments with ultra-large temperature gradient, but takes up little space because of its unique geometry and small size.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature

ToC Category:

Original Manuscript: May 17, 2010
Revised Manuscript: June 15, 2010
Manuscript Accepted: June 15, 2010
Published: June 17, 2010

Jun-long Kou, Jing Feng, Liang Ye, Fei Xu, and Yan-qing Lu, "Miniaturized fiber taper reflective interferometer for high temperature measurement," Opt. Express 18, 14245-14250 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007). [CrossRef]
  2. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  3. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008). [CrossRef] [PubMed]
  4. Y. Z. Zhu, Z. Y. Huang, F. B. Shen, and A. B. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005). [CrossRef] [PubMed]
  5. A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Advances in sapphire-fiber-based intrinsic interferometric sensors,” Opt. Lett. 17(21), 1544–1546 (1992). [CrossRef] [PubMed]
  6. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008). [CrossRef] [PubMed]
  7. C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007). [CrossRef]
  8. S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004). [CrossRef]
  9. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010). [CrossRef] [PubMed]
  10. D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006). [CrossRef]
  11. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008). [CrossRef] [PubMed]
  12. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010). [CrossRef] [PubMed]
  13. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009). [CrossRef] [PubMed]
  14. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008). [CrossRef] [PubMed]
  15. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007). [CrossRef] [PubMed]
  16. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009). [CrossRef] [PubMed]
  17. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited