OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14330–14344

Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14330-14344 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A snapshot Image Mapping Spectrometer (IMS) with high sampling density is developed for hyperspectral microscopy, measuring a datacube of dimensions 285 × 285 × 60 (x, y, λ). The spatial resolution is ~0.45 µm with a FOV of 100 × 100 µm2. The measured spectrum is from 450 nm to 650 nm and is sampled by 60 spectral channels with average sampling interval ~3.3 nm. The channel’s spectral resolution is ~8nm. The spectral imaging results demonstrate the potential of the IMS for real-time cellular fluorescence imaging.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.2520) Microscopy : Fluorescence microscopy
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: April 6, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: June 14, 2010
Published: June 21, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk, "Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy," Opt. Express 18, 14330-14344 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [CrossRef] [PubMed]
  2. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002). [CrossRef] [PubMed]
  3. T. Vo-Dinh, “A hyperspectral imaging system for in vivo optical diagnostics,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2007).
  4. K. J. Zuzak, R. P. Francis, E. F. Wehner, J. Smith, D. Allen, M. Litorja, C. Tracy, J. Cadeddu, and E. Livingston, “Hyperspectral imaging utilizing LCTF and DLP technology for surgical and clinical applications,” Proc. SPIE, 7170–10 (2009).
  5. C. Zeiss, Germany, “LSM 710 Product Brochure”. http://www.zeiss.com .
  6. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  7. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001). [CrossRef] [PubMed]
  8. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000). [CrossRef] [PubMed]
  9. ChromoDynamics, Inc., Orlando, FL, “HSi-300 hyperspectral imaging system data sheet”. http://www.chromodynamics.net/ .
  10. Cambridge Research and Instrumentation, Inc., Cambridge, MA, “VARISPEC liquid crystal tunable filters brochure”. http://www.cri-inc.com/
  11. R. H. Berg, “Evaluation of spectral imaging for plant cell analysis,” J. Microsc. 214(2), 174–181 (2004). [CrossRef] [PubMed]
  12. K. Ritchie, X. Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A. Kusumi, “Detection of non-Brownian diffusion in the cell membrane in single molecule tracking,” Biophys. J. 88(3), 2266–2277 (2005). [CrossRef]
  13. K. N. Richmond, R. D. Shonat, R. M. Lynch, and P. C. Johnson, “The critical oxygen tension of skeletal muscle in vivo,” Am. J. Physiol. 277(5 Pt 2), H1831–H1840 (1999). [PubMed]
  14. B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001). [CrossRef] [PubMed]
  15. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001). [CrossRef] [PubMed]
  16. C. A. Fernandez, A. Wagadarikar, D. J. Brady, S. C. McCain, and T. Oliver, “Fluorescence microscopy with a coded aperture snapshot spectral imager,” Proc. SPIE 7184, 71840Z (2009). [CrossRef]
  17. C. F. Cull, K. Choi, D. J. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt. 49(10), B59–B70 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ao-49-10-B59 . [CrossRef] [PubMed]
  18. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18(6), 5602–5608 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-6-5602 . [CrossRef] [PubMed]
  19. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, (New York, Springer, 2006).
  20. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express 17(15), 12293–12308 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-15-12293 . [CrossRef] [PubMed]
  21. R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-49-10-1886 . [CrossRef] [PubMed]
  22. R. T. Kester, L. Gao, N. Bedard, and T. S. Tkaczyk, “Real-time hyperspectral endoscope for early cancer diagnostics,” Proc. SPIE 7555, 75550A (2010). [CrossRef]
  23. M. J. Booth, A. Jesacher, R. Juå Kaitis, and T. Wilson, “Full spectrum filterless fluorescence microscopy,” J. Microsc. 237(1), 103–109 (2010). [CrossRef] [PubMed]
  24. J. Y. Ye, C. J. Divin, J. R. Baker, and T. B. Norris, “Whole spectrum fluorescence detection with ultrafast white light excitation,” Opt. Express 15(16), 10439–10445 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10439 . [CrossRef] [PubMed]
  25. Imperx Inc, “IPX-16M3 data sheet”, http://www.imperx.com .
  26. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” in Advances in Biochemical Engineering Biotechnology, T. Scheper, ed. (New York, Springer, 2005).
  27. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002). [CrossRef] [PubMed]
  28. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007). [CrossRef] [PubMed]
  29. R. A. Schwarz, W. Gao, C. Redden Weber, C. Kurachi, J. J. Lee, A. K. El-Naggar, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy,” Cancer 115(8), 1669–1679 (2009). [CrossRef] [PubMed]
  30. Fairchild, Inc., Andor, Inc., and PCO, Inc., “sCMOS data sheet”. http://www.scmos.com/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (337 KB)     
» Media 2: MOV (833 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited