OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14375–14384

Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging

Li Huo, Jiefeng Xi, Yicong Wu, and Xingde Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14375-14384 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A forward-viewing resonant fiber-optic endoscope of a scanning speed appropriate for a high-speed Fourier-domain optical coherence tomography (FD-OCT) system was developed to enable real-time, three-dimensional endoscopic OCT imaging. A new method was explored to conveniently tune the scanning frequency of a resonant fiber-optic scanner, by properly selecting the fiber-optic cantilever length, partially changing the mechanical property of the cantilever, and adding a weight to the cantilever tip. Systematic analyses indicated the resonant scanning frequency can be tuned over two orders of magnitude spanning from ~10Hz to ~kHz. Such a flexible scanning frequency range makes it possible to set an appropriate scanning speed of the endoscope to match the different A-scan rates of a variety of FD-OCT systems. A 2.4-mm diameter, 62.5-Hz scanning endoscope appropriate to work with a 40-kHz swept-source OCT (SS-OCT) system was developed and demonstrated for 3D OCT imaging of biological tissues.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5800) Instrumentation, measurement, and metrology : Scanners
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 13, 2010
Revised Manuscript: June 6, 2010
Manuscript Accepted: June 14, 2010
Published: June 21, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Li Huo, Jiefeng Xi, Yicong Wu, and Xingde Li, "Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed 
for 3D OCT imaging," Opt. Express 18, 14375-14384 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  5. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). [CrossRef] [PubMed]
  7. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  8. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010). [CrossRef]
  9. J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34(13), 1943–1945 (2009). [CrossRef] [PubMed]
  10. X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000). [CrossRef]
  11. X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  12. Y. L. Wang, M. Bachman, G. P. Li, S. G. Guo, B. J. F. Wong, and Z. P. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005). [CrossRef] [PubMed]
  13. Y. T. Pan, H. K. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001). [CrossRef]
  14. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003). [CrossRef] [PubMed]
  15. J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006). [CrossRef] [PubMed]
  16. M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  17. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, in Fundamentals of Acoustics(Wiley, New York, 1982).
  18. D. L. Wang, B. V. Hunter, M. J. Cobb, and X. D. Li, “Super-achromatic rapid scanning microendoscope for ultrahigh-resolution OCT imaging,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1596–1601 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3951 KB)     
» Media 2: MOV (1194 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited