OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14401–14408

Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams

Xin Jia, Tianqing Jia, Yi Zhang, Pingxin Xiong, Donghai Feng, Zhenrong Sun, and Zhizhan Xu  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14401-14408 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two dimensional (2D) periodic microstructures composed of short periodic ripples, long periodic ripples and micro-holes are fabricated on ZnO crystals via the interference of two femtosecond laser beams. The relative reflectivity and transmissivity of visible light of these 2D microstructures decrease to the values of 30% and 20%, respectively. Theoretical and experimental studies indicate that besides the effects of increased surface area, the decrease of reflectivity is influenced greatly by the Mie scattering of surface microstructures, and the transmissivity, by the damage of crystalline structures.

© 2010 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Laser Microfabrication

Original Manuscript: May 24, 2010
Manuscript Accepted: May 31, 2010
Published: June 21, 2010

Xin Jia, Tianqing Jia, Yi Zhang, Pingxin Xiong, Donghai Feng, Zhenrong Sun, and Zhizhan Xu, "Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams," Opt. Express 18, 14401-14408 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Birnbaum, “Semiconductor Surface Damage Produced by Ruby Lasers,” J. Appl. Phys. 36(11), 3688 (1965). [CrossRef]
  2. D. Emmony, R. Howson, and L. Willis, “Laser mirror damage in germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598 (1973). [CrossRef]
  3. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27(2), 1155–1172 (1983). [CrossRef]
  4. F. Costache, M. Henyk, and J. Reif, “Modification of dielectric surfaces with ultra-short laser pulses,” Appl. Surf. Sci. 186(1-4), 352–357 (2002). [CrossRef]
  5. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  6. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Femtosecond-laser-induced nanostructure formed on hard thin film of TiN and DLC,” Appl. Phys., A Mater. Sci. Process. 76(6), 983–985 (2003). [CrossRef]
  7. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005). [CrossRef]
  8. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef] [PubMed]
  9. S. Juodkazis, K. Nishimura, and H. Misawa, “In-bulk and surface structuring of sapphire by femtosecond pulses,” Appl. Surf. Sci. 253(15), 6539–6544 (2007). [CrossRef]
  10. Q. Z. Zhao, F. Ciobanu, S. Malzer, and L. J. Wang, “Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring,” Appl. Phys. Lett. 91(12), 121107 (2007). [CrossRef]
  11. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  12. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008). [CrossRef] [PubMed]
  13. E. Hsu, T. Crawford, C. Maunders, G. Botton, and H. Haugen, “Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation,” Appl. Phys. Lett. 92(22), 221112 (2008). [CrossRef]
  14. H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, “Suppression of ripples on ablated Ni surface via a polarization grating,” Opt. Express 17(6), 4388–4396 (2009). [CrossRef] [PubMed]
  15. X. Jia, T. Q. Jia, L. E. Ding, P. X. Xiong, L. Deng, Z. R. Sun, Z. G. Wang, J. R. Qiu, and Z. Z. Xu, “Complex periodic micro/nanostructures on 6H-SiC crystal induced by the interference of three femtosecond laser beams,” Opt. Lett. 34(6), 788–790 (2009). [CrossRef] [PubMed]
  16. L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett. 34(12), 1846–1848 (2009). [CrossRef] [PubMed]
  17. P. Campbell, “Enhancement of light absorption from randomizing and geometric textures,” J. Opt. Soc. Am. B 10(12), 2410 (1993). [CrossRef]
  18. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850 (2001). [CrossRef]
  19. A. S. Mahmood, M. Sivakumar, K. Venkatakrishnan, and B. Tan, “Enhancement of optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation,” Appl. Phys. Lett. 95(3), 034107 (2009). [CrossRef]
  20. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005). [CrossRef]
  21. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, and X. W. Sun, “Raman spectroscopy and luminescent properties of ZnO nanostructures fabricated by femtosecond laser pulses,” Mater. Lett. 61(23-24), 4583–4586 (2007). [CrossRef]
  22. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, H. L. Ma, B. Lu, and X. W. Sun, “Femtosecond laser-induced periodic surface structure on ZnO,” Mater. Lett. 62(12-13), 1769–1771 (2008). [CrossRef]
  23. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009). [CrossRef]
  24. M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structure on ZnO fabricated by two-beam femtosecond laser ablation,” Nanotechnology 18(50), 505301 (2007). [CrossRef]
  25. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008). [CrossRef]
  26. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009). [CrossRef]
  27. T. Q. Jia, M. Baba, M. Suzuki, R. A. Ganeev, H. Kuroda, J. R. Qiu, X. Wang, R. Li, and Z. Xu, “Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses,” Opt. Express 16(3), 1874–1878 (2008). [CrossRef] [PubMed]
  28. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  29. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li,, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006). [CrossRef]
  30. M. Born, and E. Wolt, Principles of Optics, (Pergamon Press, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited