OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14439–14453

Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces

Peter T. Rakich, Paul Davids, and Zheng Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14439-14453 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Radiation pressure is known to scale to large values in engineered micro and nanoscale photonic waveguide systems. In addition to radiation pressure, dielectric materials also exhibit strain-dependent refractive index changes, through which optical fields can induce electrostrictive forces. To date, little attention has been paid to the electrostrictive component of optical forces in high-index contrast waveguides. In this paper, we examine the magnitude, scaling, and spatial distribution of electrostrictive forces through analytical and numerical models, revealing that electrostrictive forces increase to large values in high index-contrast waveguides. Similar to radiation pressure, electrostrictive forces increase quadratically with the optical field. However, since electrostrictive forces are determined by the material photoelastic tensor, the sign of the electrostrictive force is highly material-dependent, resulting in cancellation with radiation pressure in some instances. Furthermore, our analysis reveals that the optical forces resulting from both radiation pressure and electrostriction can scale to remarkably high levels (i.e., greater than 104(N/m2)) for realistic guided powers. Additionally, even in simple rectangular waveguides, the magnitude and distribution of both forces can be engineered at the various boundaries of the waveguide system by choice of material system and geometry of the waveguide.This tailorability points towards novel and simple waveguide designs which enable selective excitation of elastic waves with desired symmetries through engineered stimulated Brillouin scattering processes in nanoscale waveguide systems.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(200.4880) Optics in computing : Optomechanics

ToC Category:
Physical Optics

Original Manuscript: April 9, 2010
Revised Manuscript: June 6, 2010
Manuscript Accepted: June 16, 2010
Published: June 22, 2010

Peter T. Rakich, Paul Davids, and Zheng Wang, "Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces," Opt. Express 18, 14439-14453 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mizrahi and L. Schachter, “Optical Bragg accelerators,” Phys. Rev. E 70, 016505 (2004). [CrossRef]
  2. M. Povinelli, M. Ibanescu, S. Johnson, and J. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004). [CrossRef]
  3. M. Povinelli, S. Johnson, M. Loncar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators,” Opt. Express 13, 8286–8295 (2005). [CrossRef] [PubMed]
  4. M. Povinelli, M. Loncar, M. Ibanescu, E. Smythe, S. Johnson, F. Capasso, and J. Joannopoulos, “Evanescent wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef] [PubMed]
  5. A. Mizrahi and L. Schachter, “Mirror manipulation by attractive and repulsive forces of guided waves,” Opt. Express 13, 9804–9811 (2005). [CrossRef] [PubMed]
  6. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97, 23903 (2006). [CrossRef]
  7. A. Mizrahi and L. Schachter, “Electromagnetic forces on the dielectric layers of the planar optical Bragg acceleration structure,” Phys. Rev. E 74, 36504 (2006). [CrossRef]
  8. A. Mizrahi and L. Schachter, “Two-slab all-optical spring,” Opt. Lett. 32, 692–694 (2007). [CrossRef] [PubMed]
  9. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007). [CrossRef]
  10. P. Rakich, M. Popovic, M. Soljacic, and E. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–669 (2007). [CrossRef]
  11. A. Mizrahi, M. Horowitz, and L. Schaechter, “Torque and longitudinal force exerted by eigenmodes on circular waveguides,” Phys. Rev. A 78, 23802 (2008). [CrossRef]
  12. H. Taniyama, M. Notomi, E. Kuramochi, T. Yamamoto, Y. Yoshikawa, Y. Torii, and T. Kuga, “Strong radiation force induced in two-dimensional photonic crystal slab cavities,” Phys. Rev. B 78, 165129 (2008). [CrossRef]
  13. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  14. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009). [CrossRef] [PubMed]
  15. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, ““Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009). [CrossRef] [PubMed]
  16. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic crystal optomechanical cavity,” Nature 459, 550–553 (2009). [CrossRef] [PubMed]
  17. P. Rakich, M. Popovic, and Z. Wang, “General treatment of optical forces and potentials in mechanically variable photonic systems,” Opt. Express 17, 18116–18135 (2009). [CrossRef] [PubMed]
  18. W. Pernice, M. Li, and H. Tang, “A mechanical Kerr effect in deformable photonic media,” Appl. Phys. Lett. 95, 123507 (2009). [CrossRef]
  19. M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  20. Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  21. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010). [CrossRef]
  22. M. Tomes, and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009). [CrossRef] [PubMed]
  23. P. Dainese, P. Russell, N. Joly, J. Knight, G. Wiederhecker, H. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006). [CrossRef]
  24. R. OlssonIII, I. El-Kady, M. Su, M. Tuck, and J. Fleming, “Microfabricated VHF acoustic crystals and waveguides,” Sens. Actuators A 145, 87–93 (2008). [CrossRef]
  25. I. El-Kady, R. OlssonIII, and J. Fleming, “Phononic band-gap crystals for radio frequency communications,” Appl. Phys. Lett. 92, 233504 (2008). [CrossRef]
  26. W. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addision-Wesley, 1962).
  27. J. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  28. J. Jackson, Classical Electrodynamics (Wiley, 1975).
  29. R. Boyd, Nonlinear Optics, 3rd Edition (Academic Press, 2009).
  30. Y. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  31. A. Feldman, “Relations between electrostriction and the stress-optical effect,” Phys. Rev. B 11, 5112–5114 (1975). [CrossRef]
  32. E. Dieulesaint and D. Royer, Elastic waves in solids I: Free and guided wave propagation. (Springer, 2000).
  33. D. Biegelsen, “Photoelastic Tensor of Silicon and the Volume Dependence of the Average Gap,” Phys. Rev. Lett. 32, 1196–1199 (1974). [CrossRef]
  34. L. Hounsome, R. Jones, M. Shaw, and P. Briddon, “Photoelastic constants in diamond and silicon,” Phys. Stat. Solidi C 203, 3088–3093 (2006). [CrossRef]
  35. Z. Levine, H. Zhong, S. Wei, D. Allan, and J. Wilkins, “Strained silicon: A dielectric-response calculation,” Phys. Rev. B 45, 4131–4140 (1992). [CrossRef]
  36. E. Dieulesaint, and D. Royer, Elastic waves in solids II: Generation, acousto-optic interaction, applications (Springer, 2000).
  37. A. Feldman, R. Waxler, and D. Horowitz, “Photoelastic constants of germanium,” J. Appl. Phys. 49, 2589 (1978). [CrossRef]
  38. M. Gottlieb, “2.3 Elasto-optic Materials,” CRC Handbook of Laser Science and Technology: Optical Materials, Part 2: Properties, 319, (1986).
  39. R. Guenther, Modern Optics (Wiley, 1990).
  40. R. Galkiewicz and J. Tauc, “Photoelastic properties of amorphous As2S3,” Solid State Commun. 10, 1261–1264 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited