OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14474–14479

Low loss shallow-ridge silicon waveguides

Po Dong, Wei Qian, Shirong Liao, Hong Liang, Cheng-Chih Kung, Ning-Ning Feng, Roshanak Shafiiha, Joan Fong, Dazeng Feng, Ashok V. Krishnamoorthy, and Mehdi Asghari  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14474-14479 (2010)
http://dx.doi.org/10.1364/OE.18.014474


View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate low loss shallow-ridge silicon waveguides with an average propagation loss of 0.274 ± 0.008 dB/cm in the C-band (1530 nm - 1565 nm). These waveguides have a cross section of 0.25 µm by 2 µm and are fabricated by standard photolithography and dry etching. We also investigate a compact double-level taper which adiabatically couples light from these waveguides to silicon strip waveguides enabling tight bends.

© 2010 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: May 7, 2010
Revised Manuscript: June 11, 2010
Manuscript Accepted: June 14, 2010
Published: June 22, 2010

Citation
Po Dong, Wei Qian, Shirong Liao, Hong Liang, Cheng-Chih Kung, Ning-Ning Feng, Roshanak Shafiiha, Joan Fong, Dazeng Feng, Ashok V. Krishnamoorthy, and Mehdi Asghari, "Low loss shallow-ridge silicon waveguides," Opt. Express 18, 14474-14479 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present and future of silicon photonics.” IEEE, J. Sel. Top. Quantm Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000). [CrossRef]
  3. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006). [CrossRef]
  4. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  6. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  7. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  8. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  9. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]
  10. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004). [CrossRef]
  11. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005). [CrossRef]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]
  13. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, S. Uchiyama, and S. Itabashi, “Low-loss Si wire waveguides and their application to thermooptic switches,” Jpn. J. Appl. Phys. 45(No. 8B), 6658–6662 (2006). [CrossRef]
  14. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28(13), 1150–1152 (2003). [CrossRef] [PubMed]
  15. M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87(23), 231108 (2005). [CrossRef]
  16. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392–393 (2007). [CrossRef]
  17. F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 4 (2008).
  18. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009). [CrossRef] [PubMed]
  19. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]
  20. S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open dielectric waveguides: Part I Mathematical Formulations,” IEEE Trans. Microw. Theory Tech. 29(9), 843–855 (1981). [CrossRef]
  21. A. A. Oliner, S. T. Peng, T. I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: Part II – New physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981). [CrossRef]
  22. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  23. Rsoft Design Group, Inc., 400 Executive Boulevard, Suite 100, Ossining, N.Y. 10562, USA, www.rsoftdesign.com .
  24. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder Modulator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 159–164 (2010). [CrossRef]
  25. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  26. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited