OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14511–14518

Fabrication of concave silicon micro-mirrors

Yueh Sheng Ow, Mark B. H. Breese, and Sara Azimi  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14511-14518 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated spherical and cylindrical concave micro-mirrors in silicon with dimensions from 20 μm to 100 μm. The fabrication process involves standard photolithography followed by large area ion beam irradiation and electrochemical anodisation in a HF electrolyte. After thermal oxidation the silicon surface roughness is less than 2 nm. We also present a multilayer porous silicon distributed Bragg reflector fabricated on concave silicon surfaces which selectively reflect and focus a band of wavelengths from a parallel beam of incident white light. Development of such low roughness concave microstructures opens up new applications in areas such as silicon photonics and quantum information science.

© 2010 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(160.6000) Materials : Semiconductor materials
(230.1480) Optical devices : Bragg reflectors
(230.4000) Optical devices : Microstructure fabrication
(330.1690) Vision, color, and visual optics : Color

ToC Category:
Optical Devices

Original Manuscript: May 13, 2010
Revised Manuscript: June 15, 2010
Manuscript Accepted: June 15, 2010
Published: June 22, 2010

Yueh Sheng Ow, Mark B. H. Breese, and Sara Azimi, "Fabrication of concave silicon micro-mirrors," Opt. Express 18, 14511-14518 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Merenda, M. Grossenbacher, S. Jeney, L. Forró, and R. P. Salathé, “Three-dimensional force measurements in optical tweezers formed with high-NA micromirrors,” Opt. Lett. 34(7), 1063–1065 (2009). [CrossRef] [PubMed]
  2. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007). [CrossRef] [PubMed]
  3. C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004). [CrossRef]
  4. Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000). [CrossRef]
  5. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005). [CrossRef]
  6. G. Q. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, “A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies,” Opt. Express 14(6), 2289–2299 (2006). [CrossRef] [PubMed]
  7. P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003). [CrossRef]
  8. S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994). [CrossRef] [PubMed]
  9. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995). [CrossRef] [PubMed]
  10. F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993). [CrossRef]
  11. D. C. Appleyard and M. J. Lang, “Active particle control through silicon using conventional optical trapping techniques,” Lab Chip 7(12), 1837–1840 (2007). [CrossRef] [PubMed]
  12. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009). [CrossRef] [PubMed]
  13. T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996). [CrossRef]
  14. M. Navarro, J. M. LopezVillegas, J. Samitier, J. R. Morante, J. Bausells, and A. Merlos, “Electrochemical etching of porous silicon sacrificial layers for micromachining applications,” in 7th Workshop on Micromachining, Micromechanics and Microsystems in Europe (MME 96, 1996), pp. 131–132.
  15. E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004). [CrossRef]
  16. E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006). [CrossRef]
  17. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006). [CrossRef]
  18. D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008). [PubMed]
  19. Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010). [CrossRef]
  20. V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH 2002).
  21. G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997). [CrossRef]
  22. A. A. Busnaina, “An Experimental Study of Megasonic Cleaning of Silicon Wafers,” J. Electrochem. Soc. 142(8), 2812 (1995). [CrossRef]
  23. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]
  24. L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999). [CrossRef]
  25. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990). [CrossRef]
  26. X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006). [CrossRef]
  27. D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited