OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14535–14540

White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm

J. Cascante-Vindas, A. Díez, J. L. Cruz, and M.V. Andrés  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14535-14540 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 μm. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.

© 2010 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.2285) Optical devices : Fiber devices and optical amplifiers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 23, 2010
Revised Manuscript: May 15, 2010
Manuscript Accepted: May 15, 2010
Published: June 23, 2010

J. Cascante-Vindas, A. Díez, J. L. Cruz, and M.V. Andrés, "White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm," Opt. Express 18, 14535-14540 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  3. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9(13), 687–697 (2001). [CrossRef] [PubMed]
  4. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003). [CrossRef] [PubMed]
  5. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004). [CrossRef] [PubMed]
  6. J. Cascante-Vindas, A. Diez, J. L. Cruz, M. V. Andres, E. Silvestre, J. J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun. 281(3), 433–438 (2008). [CrossRef]
  7. J. Teipel, D. Türke, H. Giessen, A. Zintl, and B. Braun, “Compact multi-Watt picosecond coherent white light sources using multiple-taper fibers,” Opt. Express 13(5), 1734–1742 (2005). [CrossRef] [PubMed]
  8. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30(23), 3132–3134 (2005). [CrossRef] [PubMed]
  9. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005). [CrossRef] [PubMed]
  10. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30(12), 1566–1568 (2005). [CrossRef] [PubMed]
  11. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006). [CrossRef] [PubMed]
  12. J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008). [CrossRef] [PubMed]
  13. J. Cascante-Vindas, S. Torres-Peiró, A. Diez, and M. V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010). [CrossRef]
  14. T. Boris, “Confinement loss in adiabatic photonic crystal fiber tapers,” J. Opt. Soc. Am. B 23, 1965–1974 (2006). [CrossRef]
  15. S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33(22), 2578–2580 (2008). [CrossRef] [PubMed]
  16. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13(17), 6541–6549 (2005). [CrossRef] [PubMed]
  17. A. Hochman and Y. Leviatan, “Efficient and spurious-free integral-equation-based optical waveguide mode solver,” Opt. Express 15(22), 14431–14453 (2007). [CrossRef] [PubMed]
  18. C. Fukai, K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, and I. Sankawa, “Effective Raman gain characteristics in germanium- and fluorine-doped optical fibers,” Opt. Lett. 29(6), 545–547 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited