OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14547–14552

Investigation of polarized light emitting diodes with integrated wire grid polarizer

Örs Sepsi, István Szanda, and Pál Koppa  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14547-14552 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization properties of light emitting diodes with integrated wire grid polarizers are investigated. Rigorous coupled wave analysis and Monte-Carlo ray tracing are used for modeling the gratings and the entire LED structure respectively. We show that it is more advantageous to place the polarizer onto the LED encapsulation rather than onto the die. With the proposed arrangement the average extinction ratio is 2.37 in the uncollimated case and 76.86 in the collimated case, while the light extraction efficiency is significantly higher than that of the LED + external polarizer combination. The achieved results compare favorably to other polarized LED solutions proposed in the literature.

© 2010 OSA

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(230.3670) Optical devices : Light-emitting diodes
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: April 2, 2010
Revised Manuscript: May 21, 2010
Manuscript Accepted: June 5, 2010
Published: June 23, 2010

Örs Sepsi, István Szanda, and Pál Koppa, "Investigation of polarized light emitting diodes with integrated wire grid polarizer," Opt. Express 18, 14547-14552 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).
  2. G. B. Stringfellow, and M. G. Craford, “High Brightness Light Emitting Diodes,” in Semiconductors and Semimetals, R. K. Wiliardson and E. R. Weber eds. (Academic Press, 1997), Vol. 48.
  3. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003). [CrossRef]
  4. J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005). [CrossRef]
  5. R. Otte, L. P. de Joung, and A. H. M. van Roermund, Low-Power Wireless Infrared Communications (Kluwer Academic Publishers, 1999).
  6. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (John Wiley, Canada, 1999).
  7. M. F. Schubert, A. Noemaun, S. Chhajed, J. K. Kim, E. F. Schubert, and Ch. Sone, “Encapsulation shape with non-rotational symmetry designed for extraction of polarized light from unpolarized sources,” Opt. Express 15(16), 10452–10457 (2007). [CrossRef] [PubMed]
  8. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Linearly polarized emission from GaInN lightemitting diodes with polarization-enhancing reflector,” Opt. Express 15(18), 11213–11218 (2007). [CrossRef] [PubMed]
  9. J. A. Wheatley, C. A. Leatherdale, and A. J. Ouderkirk, “Polarized LED,” International Patent, WO 2006/052328 A1 (2006).
  10. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006). [CrossRef] [PubMed]
  11. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007). [CrossRef] [PubMed]
  12. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006). [CrossRef]
  13. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007). [CrossRef]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  16. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994). [CrossRef]
  17. N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999). [CrossRef]
  18. D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008). [CrossRef]
  19. T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007). [CrossRef] [PubMed]
  20. Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008). [CrossRef]
  21. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited