OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14586–14597

Photonic analogue of Josephson effect in a dual-species optical-lattice cavity

Soi-Chan Lei, Tai-Kai Ng, and Ray-Kuang Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14586-14597 (2010)
http://dx.doi.org/10.1364/OE.18.014586


View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the idea of quantum phase transitions of light in the photonic Bose-Hubbard model with interactions to two atomic species by a self-consistent mean field theory. The excitation of two-level atoms interacting with a coherent photon field is analyzed with a finite temperature dependence of the order parameters. Four ground states of the system are found, including an isolated Mott-insulator phase and three different superfluid phases. Like two weakly coupled superconductors, our proposed dual-species lattice system shows a photonic analogue of Josephson effect. i.e., the crossovers between two superfluid states. The dynamics of the proposed two species model provides a promising quantum simulator for possible quantum information processes.

© 2010 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

History
Original Manuscript: April 14, 2010
Revised Manuscript: June 6, 2010
Manuscript Accepted: June 18, 2010
Published: June 23, 2010

Citation
Soi-Chan Lei, Tai-Kai Ng, and Ray-Kuang Lee, "Photonic analogue of Josephson effect in a dual-species optical-lattice cavity," Opt. Express 18, 14586-14597 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sachdev, Quantum Phase Transitions, (Cambridge University Press, 1999).
  2. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002). [CrossRef] [PubMed]
  3. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold Bosonic Atoms in Optical Lattices,” Phys. Rev. Lett. 81, 3108–3111 (1998). [CrossRef]
  4. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, “Boson localization and the superfluid-insulator transition,” Phys. Rev. B 40, 546–570 (1989). [CrossRef]
  5. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–862 (2006). [CrossRef]
  6. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006). [CrossRef]
  7. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805 (2007). [CrossRef]
  8. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Effective Spin Systems in Coupled Microcavities,” Phys. Rev. Lett. 99, 160501 (2007). [CrossRef] [PubMed]
  9. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “A polaritonic two-component Bose-Hubbard model,” N. J. Phys. 10, 033011 (2008). [CrossRef]
  10. D. Rossini, and R. Fazio, “Mott-Insulating and Glassy Phases of Polaritons in 1D Arrays of Coupled Cavities,” Phys. Rev. Lett. 99, 186401 (2007). [CrossRef] [PubMed]
  11. S.-C. Lei, and R.-K. Lee, “Quantum phase transitions of light in the Dicke-Bose-Hubbard model,” Phys. Rev. A 77, 033827 (2008). [CrossRef]
  12. T. Giamarchi, C. Rügg, and O. Tchernyshyov, “Bose-Einstein condensation in magnetic insulators,” Nat. Phys. 4, 198–204 (2008). [CrossRef]
  13. J. Quach, M. Makin, C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Band structure, phase transitions, and semiconductor analogs in one-dimensional solid light systems,” Phys. Rev. A 80, 063838 (2009). [CrossRef]
  14. P. Wurtz, T. Langen, T. Gericke, A. Koglbauer, and H. Ott, “Experimental Demonstration of Single-Site Addressability in a Two-Dimensional Optical Lattice,” Phys. Rev. Lett. 103, 080404 (2009). [CrossRef] [PubMed]
  15. E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, “Phase diagram of two-component bosons on an optical lattice,” N. J. Phys. 5, 11301–11319 (2003). [CrossRef]
  16. T. Mishra, B. K. Sahoo, and R. V. Pai, “Phase-separated charge-density-wave phase in the two-species extended Bose-Hubbard model,” Phys. Rev. A 78, 013632 (2008). [CrossRef]
  17. E. T. Jaynes, and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  18. B. D. Josephson, “The discovery of tunneling supercurrents,” Rev. Mod. Phys. 46, 251–254 (1974). [CrossRef]
  19. D. Gerace, H. E. Tureci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5, 281–284 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited