OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14598–14603

A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer

Chris H. Sarantos and Nadir Dagli  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14598-14603 (2010)
http://dx.doi.org/10.1364/OE.18.014598


View Full Text Article

Enhanced HTML    Acrobat PDF (644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Mach-Zehnder modulator (MZM) based analog to digital converter (ADC) is described. The signal to be digitized is applied to a single electrode of a high speed unbalanced modulator that acts as a quantizer. The rest of the system consists of commercially available wavelength division multiplexing (WDM) components. Analysis indicates that 6 bit operation at 40 Giga Samples per second (GS/s) is possible with moderate optical carrier power.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(130.0130) Integrated optics : Integrated optics
(230.4110) Optical devices : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: April 20, 2010
Revised Manuscript: June 2, 2010
Manuscript Accepted: June 21, 2010
Published: June 23, 2010

Citation
Chris H. Sarantos and Nadir Dagli, "A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer," Opt. Express 18, 14598-14603 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999). [CrossRef]
  2. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003). [CrossRef] [PubMed]
  3. S. Oda and A. Maruta, “A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005). [CrossRef]
  4. T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008). [CrossRef]
  5. R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010). [CrossRef]
  6. Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With Dynamic Counter-Propagating Effects Compensation for 5-Bit All-Optical Analog-to-Digital Conversion and Its Performance Evaluations,” J. Lightwave Technol. 28(4), 415–422 (2010). [CrossRef]
  7. B. Shoop, Photonic analog-to-digital conversion, (Springer-Verlag, 2001).
  8. C. Sarantos and N. Dagli, “An Unbalanced MZM based Photonic Analog-to-Digital Converter,” Proceedings of IEEE/LEOS 2007 Annual Meeting, pp. 110-111, 2007.
  9. Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009). [CrossRef] [PubMed]
  10. E. A. J. Marcatili, “Optical subpicosecond gate,” Appl. Opt. 19(9), 1468–1476 (1980). [CrossRef] [PubMed]
  11. J. J. Veselka and S. K. Korotky, “Pulse Generation for Soliton Systems Using Lithium Niobate Modulators,” IEEE J. Sel. Top. Quantum Electron. 2(2), 300–310 (1996). [CrossRef]
  12. H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980). [CrossRef]
  13. D. J. Bachmann, N. Dagli, J. Calusdian, P. E. Pace, and J. P. Powers, Optical Pulse Train Generation Using Modulator Cascades,” Proceedings of IEEE/LEOS 2008 Annual Meeting, Paper TuF-4, pp. 190–191, Newport Beach, CA, November 9–13, 2008.
  14. N. Dagli, “Wide Bandwidth Lasers and Modulators for RF Photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999). [CrossRef]
  15. K. M. Noguchi and H. Miyazawa, “Design of Ultra Broad Band LiNbO3 Optical Modulators with Ridge Structure,” IEEE Trans. Microw. Theory Tech. MTT-43, 2203–2207 (1995).
  16. J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007). [CrossRef]
  17. Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998). [CrossRef]
  18. G. Agrawal, Fiber Optic Communications Systems, Section 4.6.1, (Wiley, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited