OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14604–14615

High performances III-Nitride Quantum Dot infrared photodetector operating at room temperature

A. Asgari and S. Razi  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14604-14615 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present a novel long wave length infrared quantum dot photodetector. A cubic shaped 6nm GaN quantum dot (QD) within a large 18 nm A l 0.2 G a 0.8 N QD (capping layer) embedded in A l 0.8 G a 0.2 N has been considered as the unit cell of the active layer of the device. Single band effective mass approximation has been applied in order to calculate the QD electronic structure. The temperature dependent behavior of the responsivity and dark current were presented and discussed for different applied electric fields. The capping layer has been proposed to improve upon the dark current of the detector. The proposed device has demonstrated exceptionally low dark current, therefore low noise, and high detectivity. Excellent specific detectivity (D*) up to ~3 × 108CmHz1/ 2/W is achieved at room temperature.

© 2010 OSA

OCIS Codes
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: April 20, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: June 15, 2010
Published: June 23, 2010

A. Asgari and S. Razi, "High performances III-Nitride Quantum Dot infrared photodetector operating at room temperature," Opt. Express 18, 14604-14615 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993). [CrossRef]
  2. A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003). [CrossRef]
  3. A. Rogalski, “Infrared Detectors”, NewYork: Gordon and Breach, 155–650 (2000).
  4. S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001). [CrossRef]
  5. X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007). [CrossRef]
  6. J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999). [CrossRef]
  7. S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007). [CrossRef]
  8. D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998). [CrossRef]
  9. A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001). [CrossRef]
  10. L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003). [CrossRef]
  11. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990). [CrossRef]
  12. Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003). [CrossRef]
  13. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004). [CrossRef]
  14. S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006). [CrossRef]
  15. S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001). [CrossRef]
  16. H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005). [CrossRef]
  17. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001). [CrossRef]
  18. T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001). [CrossRef]
  19. L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006). [CrossRef]
  20. S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).
  21. L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000). [CrossRef]
  22. C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006). [CrossRef]
  23. M. Roy and P. A. Makasym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Phys. Rev. B , 68235308 (2003).
  24. M. Califano and P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 61(16), 10959–10965 (2000). [CrossRef]
  25. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999). [CrossRef]
  26. S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002). [CrossRef]
  27. R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000). [CrossRef]
  28. M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996). [CrossRef]
  29. A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004). [CrossRef]
  30. M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005). [CrossRef] [PubMed]
  31. Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).
  32. X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007). [CrossRef]
  33. P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005). [CrossRef]
  34. A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009). [CrossRef]
  35. H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited