OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14627–14636

Multiwatt—power highly—coherent compact single—frequency tunable Vertical—External—Cavity—Surface—Emitting—Semiconductor—Laser

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14627-14636 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate high power (2.1 W) low noise single frequency operation of a tunable compact verical–external–cavity surface–emitting–laser exhibiting a high beam quality. We took advantage of thermal lens–based stability to develop a short (3 – 10 mm) plano–plano external cavity without any intracavity filter. The semiconductor structure emitting at 1µm is optically pumped by a 8W commercial 808 nm multimode diode laser at large incidence angle. For heat management purpose the GaAs-based VECSEL membrane was bonded on a SiC substrate. We measured a low divergence quasi-circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB).We simulated the steady state laser beam of this unstable cavity using Fresnel diffraction. The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (< 0.1%), with a cutoff frequency ~ 41MHz above which the shot noise level is reached. The key parameters limiting the laser power and coherence are studied. This design/properties can be extended to other wavelengths.

© 2010 Optical Society of America

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 27, 2010
Revised Manuscript: June 9, 2010
Manuscript Accepted: June 13, 2010
Published: June 23, 2010

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, "Multiwatt–power highly–coherent compact single–frequency tunable Vertical–External–Cavity–Surface–Emitting–Semiconductor–Laser," Opt. Express 18, 14627-14636 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999). [CrossRef]
  2. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003). [CrossRef]
  3. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Méndez, “2-2.7μm single frequency tunable Sb–based lasers operating in CW at RT: Microcavity and External cavity VCSELs, DFB,” in Proc. SPIE, vol. 6184, p. 61840N (2006).
  4. A. Garnache, A. Ouvrard, and D. Romanini, “Single–Frequency operation of External–Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15(15), 9403–9417 (2007). [CrossRef] [PubMed]
  5. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009). [CrossRef] [PubMed]
  6. M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006). [CrossRef]
  7. A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).
  8. R. H. Abram, K. S. Gardner, E. Riis, and A. I. Ferguson, “Narrow linewidth operation of a tunable optically pumped semiconductor laser,” Opt. Express 12(22), 5434–5439 (2004). [CrossRef] [PubMed]
  9. H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett. 30(17), 2260–2262 (2005).
  10. L. Bernstein, “Semiconductor joining by the solid-liquid interdiffusion (SLID) process,” J. Electrochem. Soc. 113, 1282–1288 (1966). [CrossRef]
  11. L. A. Coldren, and S. W. Corzine, Diode lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  12. A. E. Siegman, Lasers (University Science Books, Mill Valley (California), 1986).
  13. M. Kuznetsov, M. Stern, and J. Coppeta, “Single transverse mode optical resonators,” Opt. Express 13, 171–181 (2005). [CrossRef] [PubMed]
  14. R. P. Muffoletto, “Numerical Techniques for Fresnel Diffraction in Computational Holography,” Ph.D. thesis, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College (2006).
  15. K. Petermann, Laser diode modulation and noise, ADOP (Kluwer Academic, Tokyo, 1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited