OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14654–14663

Statistical fluctuations of transmission in slow light photonic-crystal waveguides

S. Mazoyer, P. Lalanne, J.C. Rodier, J.P. Hugonin, M. Spasenović, L. Kuipers, D.M. Beggs, and T.F. Krauss  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14654-14663 (2010)
http://dx.doi.org/10.1364/OE.18.014654


View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report statistical fluctuations for the transmissions of a series of photonic-crystal waveguides (PhCWs) that are supposedly identical and that only differ because of statistical structural fabrication-induced imperfections. For practical PhCW lengths offering tolerable −3dB attenuation with moderate group indices (ng≈60), the transmission spectra contains very narrow peaks (Q≈20,000) that vary from one waveguide to another. The physical origin of the peaks is explained by calculating the actual electromagnetic-field pattern inside the waveguide. The peaks that are observed in an intermediate regime between the ballistic and localization transports are responsible for a smearing of the local density of states, for a rapid broadening of the probability density function of the transmission, and bring a severe constraint on the effective use of slow light for on-chip optical information processing. The experimental results are quantitatively supported by theoretical results obtained with a coupled-Bloch-mode approach that takes into account multiple scattering and localization effects.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(290.4210) Scattering : Multiple scattering
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: May 10, 2010
Revised Manuscript: June 6, 2010
Manuscript Accepted: June 6, 2010
Published: June 23, 2010

Citation
S. Mazoyer, P. Lalanne, J.C. Rodier, J.P. Hugonin, M. Spasenović, L. Kuipers, D.M. Beggs, and T.F. Krauss, "Statistical fluctuations of transmission in slow light photonic-crystal waveguides," Opt. Express 18, 14654-14663 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14654


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004). [CrossRef] [PubMed]
  2. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  4. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006). [CrossRef] [PubMed]
  5. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15(3), 1228–1233 (2007). [CrossRef] [PubMed]
  6. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007). [CrossRef] [PubMed]
  7. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  8. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  9. S. John, “Electromagnetic Absorption in a Disordered Medium near a Photon Mobility Edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984). [CrossRef]
  10. S. Mookherjea, J. S. Park, S.-H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008). [CrossRef]
  11. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef]
  12. P. Erdös and R. C. Herndon, “Theories of electrons in one-dimensional disordered systems,” Adv. Phys. 31(2), 65–163 (1982). [CrossRef]
  13. C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69(3), 731–808 (1997). [CrossRef]
  14. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103(6), 063903 (2009). [CrossRef] [PubMed]
  15. Strictly speaking, lc is defined for lossless transport systems, only. As shown by recent theoretical results [14], backscattering is largely dominant for ng>20 in the present PhCW. The out-of-plane losses being negligible, the transmitted photons may undergo many multiple-reflections without any significant damping and the expression <ln(T)> = -L/lc may be used safely to evaluate the localization length.
  16. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  17. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007). [CrossRef] [PubMed]
  18. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008). [CrossRef] [PubMed]
  19. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80(12), 125332 (2009). [CrossRef]
  20. M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009). [CrossRef] [PubMed]
  21. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009). [CrossRef] [PubMed]
  22. A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270(3), 143–215 (1996). [CrossRef]
  23. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15(18), 11042–11060 (2007). [CrossRef] [PubMed]
  24. D. M. Beggs, L. O'Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slabs using optical methods,” Photonics Nanostruct. Fundam. Appl. 6(3-4), 213–218 (2008). [CrossRef]
  25. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express 13(7), 2487–2502 (2005). [CrossRef] [PubMed]
  26. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007). [CrossRef] [PubMed]
  27. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance,” Appl. Phys. Lett. 89(17), 171121 (2006). [CrossRef]
  28. A. Gomez-Iglesias, D. O'Brien, L. O'Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007). [CrossRef]
  29. D. M. Beggs, M. A. Kaliteevski, S. Brand, R. A. Abram, D. Cassagne, and J. P. Albert, “Disorder induced modification of reflection and transmission spectra of a two-dimensional photonic crystal with an incomplete band-gap,” J. Phys. Condens. Matter 17(26), 4049–4055 (2005). [CrossRef]
  30. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29(16), 1897–1899 (2004). [CrossRef] [PubMed]
  31. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). [CrossRef] [PubMed]
  32. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005). [CrossRef]
  33. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi, B Basic Res. 244(10), 3528–3539 (2007). [CrossRef]
  34. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78(24), 245108 (2008). [CrossRef]
  35. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005). [CrossRef] [PubMed]
  36. P. Sebbah, B. Hu, J. M. Klosner, and A. Z. Genack, “Extended quasimodes within nominally localized random waveguides,” Phys. Rev. Lett. 96(18), 183902 (2006). [CrossRef] [PubMed]
  37. J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Adv. Phys. 43(4), 461–542 (1994). [CrossRef]
  38. Since I(z) = |c+(z)|2–|c–(z)|2 represents the net flow of energy in the positive-z direction, I(z)–I(z + a)≈a ∂I(z)/∂z represents the out-of-plane loss of the unit cell located between z and z + a.
  39. Chaotic transmission spectra that strongly depart from theory predictions are also observed with slow light in coupled-cavity systems, see Ref. 8 for instance.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited