OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14752–14761

Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing

Yongwoo Park and José Azaña  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14752-14761 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a fiber-optic incoherent signal processing scheme to achieve extraordinary dispersion amounts on arbitrary microwave signals with bandwidths over tens of GHz. Using this new scheme, we experimentally achieve microwave dispersion values approaching 24 ns/GHz (equivalent to the dispersion induced by a section of standard single-mode fiber with a length of ~185,000 km). The scheme is used for real-time Fourier transformation (linear frequency-to-time mapping) of nanosecond-long microwave signals, including a square-like waveform, a sinusoidal pulse and a double pulse waveform, with bandwidths over 20 GHz.

© 2010 OSA

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(200.4740) Optics in computing : Optical processing
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 17, 2010
Revised Manuscript: June 12, 2010
Manuscript Accepted: June 17, 2010
Published: June 25, 2010

Yongwoo Park and José Azaña, "Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing," Opt. Express 18, 14752-14761 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8(4), 232–234 (1983). [CrossRef] [PubMed]
  2. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000). [CrossRef]
  3. H. Chi and J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007). [CrossRef]
  4. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  5. S. Thomas, A. Malacarne, F. Fresi, L. Potì, A. Bogoni, and J. Azaña, “Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering,” Opt. Lett. 34(4), 545–547 (2009). [CrossRef] [PubMed]
  6. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006). [CrossRef] [PubMed]
  7. Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007). [CrossRef] [PubMed]
  8. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001). [CrossRef]
  9. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]
  10. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  11. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999). [CrossRef]
  12. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, ““Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” IEEE/OSA,” J. Lightwave Technol. 24(7), 2663–2675 (2006). [CrossRef]
  13. G. P. Agrawal, Nonlinear fiber optics (Elsevier, 2007)
  14. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003). [CrossRef]
  15. J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wirel. Comp. Lett. 16(4), 215–217 (2006). [CrossRef]
  16. J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007). [CrossRef]
  17. Y. Park and J. Azaña, “Optical signal processors based on a time-spectrum convolution,” Opt. Lett. 35(6), 796–798 (2010). [CrossRef] [PubMed]
  18. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005). [CrossRef]
  19. V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).
  20. Y. Park and J. Azaña, “Ultrafast photonic intensity integrator,” Opt. Lett. 34(8), 1156–1158 (2009). [CrossRef] [PubMed]
  21. V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007). [CrossRef]
  22. http://www.proximion.com
  23. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18(12), 950–952 (1993). [CrossRef] [PubMed]
  24. Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008). [CrossRef]
  25. C. Dorrer, “Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion,” J. Opt. Soc. Am. B 21(8), 1417–1423 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited