OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14812–14819

Spatiotemporal sub-wavelength near-field light localization

Fadi Issam Baida  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14812-14819 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The control and localization of light at sub-wavelength scale are theoretically demonstrated with a very simple sub-wavelength dimension structure. This is demonstrated through a peculiar structure that can support localized modes which are not linked to any plasmon resonance. It is based on the acronym ”FEMTO” that is designed using 26 sub-wavelength rectangular apertures engraved into perfectly conducting metal screen. A polarization-sensitive guided mode through these nano-apertures is at the origin of the light localization. Consequently, sub-wavelength light spots can be achieved with very simple structures illuminated by temporally shaped plane waves. Three parameters are temporally controlled for this purpose: the polarization, the wavelength and the amplitude of the incident beam. It is also demonstrated that replacing the perfect conductor by a real metal with dispersion leads to accentuate both the light confinement and its localization. These results open the path to the conception of optical nano-structures dedicated to sub-wavelength light addressing.

© 2010 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(320.5540) Ultrafast optics : Pulse shaping
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

Original Manuscript: January 5, 2010
Revised Manuscript: May 31, 2010
Manuscript Accepted: June 4, 2010
Published: June 28, 2010

Fadi I. BAIDA, "Spatiotemporal sub-wavelength near-field light localization," Opt. Express 18, 14812-14819 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003). [CrossRef]
  2. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004). [CrossRef]
  3. T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005). [CrossRef] [PubMed]
  4. T.-W. Lee, and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B 71, 35423 (2005). [CrossRef]
  5. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005). [CrossRef] [PubMed]
  6. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007). [CrossRef] [PubMed]
  7. S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).
  8. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002). [CrossRef] [PubMed]
  9. X. Li, and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer femtosecond scale by time reversal,” Phys. Rev. B 77, 195109 (2008). [CrossRef]
  10. G. Lévêque, and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone,” Phys. Rev. Lett. 100, 117402 (2008). [CrossRef] [PubMed]
  11. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  12. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000). [CrossRef]
  13. F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004). [CrossRef]
  14. A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  15. E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005). [CrossRef]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  17. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  18. J. Vigoureux, “Analysis of the Ebbesen experiments in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001). [CrossRef]
  19. F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003). [CrossRef]
  20. F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (235 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited