OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14836–14841

Photoconductive enhancement of single ZnO nanowire through localized Schottky effects

Ming-Wei Chen, Cheng-Ying Chen, Der-Hsien Lien, Yong Ding, and Jr-Hau He  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14836-14841 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2093 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated the Au nanoparticle (NP) decoration as an effective way to enhance both photocurrent and photoconductive gain of single ZnO nanowire (NW) photodetectors (PDs) through localized Schottky effects. The enhancement is caused by the enhanced space charge effect due to the existence of the localized Schottky junctions under open-circuit conditions at the NW surfaces, leading to a more pronounced electron-hole separation effect. Since the band-bending under illumination varies relatively small for an Au NP-decorated ZnO NW, the decay of gain is less prominent with increased excitation power, demonstrating the feasibility for a PD to maintain a high gain under high-power illumination.

© 2010 OSA

OCIS Codes
(000.2700) General : General science

ToC Category:

Original Manuscript: April 21, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 22, 2010
Published: June 28, 2010

Ming-Wei Chen, Cheng-Ying Chen, Der-Hsien Lien, Yong Ding, and Jr-Hau He, "Photoconductive enhancement of single ZnO nanowire through localized Schottky effects," Opt. Express 18, 14836-14841 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. He, S. Singamaneni, C. H. Ho, Y. H. Lin, M. E. McConney, and V. V. Tsukruk, “A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure,” Nanotechnology 20(6), 065502–065506 (2009). [CrossRef] [PubMed]
  2. X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Crit. Rev. Solid State 34(3), 190–223 (2009). [CrossRef]
  3. X. S. Fang, Y. Bando, M. Y. Liao, U. K. Gautam, C. Y. Zhi, B. Dierre, B. D. Liu, T. Y. Zhai, T. Sekiguchi, Y. Koide, and D. Golberg, “Single-crystalline ZnS nanobelts as ultraviolet-light sensors,” Adv. Mater. 21(20), 2034–2039 (2009). [CrossRef]
  4. X. Y. Ma, J. W. Pan, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, “Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si,” Opt. Express 17(16), 14426–14433 (2009). [CrossRef] [PubMed]
  5. W. Dai, Q. Yang, F. X. Gu, and L. M. Tong, “ZnO subwavelength wires for fast-response mid-infrared detection,” Opt. Express 17(24), 21808–21812 (2009). [CrossRef] [PubMed]
  6. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Weinheim, Ger.) 14, 158–160 (2002).
  7. Y. Liu, Z. Y. Zhang, H. L. Xu, L. H. Zhang, Z. X. Wang, W. L. Li, L. Ding, Y. F. Hu, M. Gao, Q. Li, and L. M. Peng, “Visible light response of unintentionally doped ZnO nanowire field effect transistors,” J. Phys. Chem. C 113(38), 16796–16801 (2009). [CrossRef]
  8. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007). [CrossRef] [PubMed]
  9. C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express 16(21), 16916–16922 (2008). [CrossRef] [PubMed]
  10. C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett. 93(11), 112115 (2008). [CrossRef]
  11. J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, “Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,” Nanotechnology 20(13), 135701 (2009). [CrossRef] [PubMed]
  12. J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006). [CrossRef]
  13. J. Zhou, Y. D. Gu, Y. F. Hu, W. J. Mai, P. H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009). [CrossRef] [PubMed]
  14. J. D. Prades, F. Hernandez-Ramirez, R. Jimenez-Diaz, M. Manzanares, T. Andreu, A. Cirera, A. Romano-Rodriguez, and J. R. Morante, “The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires,” Nanotechnology 19(46), 465501 (2008). [CrossRef] [PubMed]
  15. R. S. Aga, D. Jowhar, A. Ueda, Z. Pan, W. E. Collins, R. Mu, K. D. Singer, and J. Shen, “Enhanced photoresponse in ZnO nanowires decorated with CdTe quantum dot,” Appl. Phys. Lett. 91(23), 232108 (2007). [CrossRef]
  16. C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, and Z. L. Wang, “Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization,” J. Am. Chem. Soc. 129(40), 12096–12097 (2007). [CrossRef] [PubMed]
  17. N. Kouklin, “Cu-doped ZnO nanowires for efficient and multispectral photodetection applications,” Adv. Mater. 20(11), 2190–2194 (2008). [CrossRef]
  18. V. P. Zhdanov, “nm-sized metal particles on a semiconductor surface, Schottky model, etc,” Surf. Sci. 512(1-2), L331–L334 (2002). [CrossRef]
  19. H. Chen, H. Z. Zhang, L. Fu, Y. Chen, J. S. Williams, C. Yu, and D. P. Yu, “Nano Au-decorated boron nitride nanotubes: Conductance modification and field-emission enhancement,” Appl. Phys. Lett. 92(24), 243105 (2008). [CrossRef]
  20. Y. Mori and H. Kohno, “Resistance switching in a SiC nanowire/Au nanoparticle network,” Nanotechnology 20(28), 285705 (2009). [CrossRef] [PubMed]
  21. J. H. He, C. H. Ho, C. W. Wang, Y. Ding, L. J. Chen, and Z. L. Wang, “Growth of crossed ZnO nanorod networks induced by polar substrate surface,” Cryst. Growth Des. 9(1), 17–19 (2009). [CrossRef]
  22. J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, “Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,” Nanotechnology 20(13), 135701 (2009). [CrossRef] [PubMed]
  23. J. H. He, C. H. Ho, and C. Y. Chen, “Polymer functionalized ZnO nanobelts as oxygen sensors with a significant response enhancement,” Nanotechnology 20(6), 065503–065508 (2009). [CrossRef] [PubMed]
  24. C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He, “ZnO/Al2O3 core-shell nanorod arrays: growth, structural characterization, and luminescent properties,” Nanotechnology 20(18), 185605 (2009). [CrossRef] [PubMed]
  25. S. J. Chang, T. J. Hsueh, I. C. Chen, and B. R. Huang, “Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles,” Nanotechnology 19(17), 175502 (2008). [CrossRef] [PubMed]
  26. K. Ip, G. T. Thaler, H. S. Yang, S. Y. Han, Y. J. Li, D. P. Norton, S. J. Pearton, S. W. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth 287(1), 149–156 (2006). [CrossRef]
  27. B. J. Coppa, R. F. Davis, and R. J. Nemanich, “Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000-1),” Appl. Phys. Lett. 82(3), 400–402 (2003). [CrossRef]
  28. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles,” Nano Lett. 5(4), 667–673 (2005). [CrossRef] [PubMed]
  29. V. Dobrokhotov, D. N. McIlroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, R. Pouy, J. Bochenek, M. Cartwright, L. Wang, J. Dawson, M. Beaux, and C. Berven, “Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles,” J. Appl. Phys. 99(10), 104302 (2006). [CrossRef]
  30. K. Jacobi, G. Zwicker, and A. Gutmann, “Work function, electron affinity and band bending of zinc oxide surfaces,” Surf. Sci. 141(1), 109–125 (1984). [CrossRef]
  31. J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, “Photoconductive gain modelling of GaN photoconductors,” Semicond. Sci. Technol. 13(6), 563–568 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited