OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14842–14849

Modeling and experimental verification of optical materials formed by stacked nanostrips

Xingzhan Wei, Haofei Shi, Guoxing Zheng, Xiaochun Dong, and Chunlei Du  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14842-14849 (2010)
http://dx.doi.org/10.1364/OE.18.014842


View Full Text Article

Enhanced HTML    Acrobat PDF (1054 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effective plasma frequency fp of periodic metallic wires whose characteristic dimensions are comparable to their skin depth has been analyzed. And a relevant analytic model is constructed by considering the skin effect and making a reasonable shape approximation, which is suitable for the case that the cross section of the wire is noncircular. To verify this model, a wires array with rectangle cross section is designed and the corresponding stacked Au-SiO2 nanostrips are fabricated. The experimental and simulational transmittances of the metamaterial have been evaluated with a good agreement, although the presence of quartz substrate and structural imperfections in experiment will have an impact, which validates that the multilayer Au-SiO2 nanostrips could function similarly to a natural bulk metal with discrepancies of fp values less than 8%. It could be confirmed that the theoretic formula is trustworthy in predicting fp for designing and realizing a controllable artificial metal in optical region.

© 2010 OSA

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: April 27, 2010
Revised Manuscript: June 5, 2010
Manuscript Accepted: June 16, 2010
Published: June 28, 2010

Citation
Xingzhan Wei, Haofei Shi, Guoxing Zheng, Xiaochun Dong, and Chunlei Du, "Modeling and experimental verification of optical materials formed by stacked nanostrips," Opt. Express 18, 14842-14849 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Rotman, “Plasma Simulation by Artificial Dielectrics and Parallel-Plate Media,” IRE Trans. Antennas Propag. 10(1), 82–95 (1962). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998). [CrossRef]
  4. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002). [CrossRef]
  5. M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004). [CrossRef]
  6. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007). [CrossRef]
  7. X. Wei, H. Shi, Q. Deng, X. Dong, C. Liu, Y. Lu, and C. Du, “Artificial metal with effective plasma frequency in near-infrared region,” Opt. Express 18(4), 3370–3378 (2010). [CrossRef] [PubMed]
  8. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of epsilon-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046612 (2006). [CrossRef] [PubMed]
  9. M. G. Silveirinha, “Artificial plasma formed by connected metallic wires at infrared frequencies,” Phys. Rev. B 79(3), 035118 (2009). [CrossRef]
  10. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002). [CrossRef] [PubMed]
  11. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903–023907 (2008). [CrossRef] [PubMed]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005). [CrossRef] [PubMed]
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  14. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007). [CrossRef] [PubMed]
  15. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007). [CrossRef] [PubMed]
  16. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006). [CrossRef] [PubMed]
  17. V. Shrotriya, E. H. Wu, G. Li, Y. Yao, and Y. Yang, “Efficient light harvesting in multiple-device stacked structure for polymer solar cells,” Appl. Phys. Lett. 88(6), 064104 (2006). [CrossRef]
  18. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  19. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008). [CrossRef]
  20. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). [CrossRef] [PubMed]
  21. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006). [CrossRef] [PubMed]
  22. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited