OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14893–14904

Pulse compression in two-photon excitation fluorescence microscopy

Xiaobao Liang, Wenyan Hu, and Ling Fu  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14893-14904 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of shorter pulses is a practical way to improve the signal in two-photon excitation fluorescence microscopy. We report on the theoretical and experimental results of pulse compression in a two-photon excitation fluorescence microscope by using ~100-fs Ti:Sapphire laser and highly nonlinear photonic crystal fiber. Effects of the fiber parameters, transmitted power, and group-delay dispersion provided by the gratings have been investigated to optimize the compressor performance. By using a 20-mm-long photonic crystal fiber with a zero dispersion wavelength of 850 nm, a compressed pulse of 23.6 fs starting from 94 fs at 790 nm is experimentally demonstrated as a verification of our simulations. By integrating the compressor with a two-photon excitation fluorescence microscope, 5.6 times increase in autofluorescence intensity of NAD(P)H in Nasopharyngeal carcinoma cells is demonstrated, showing its potential in enhanced imaging and sensing for disease diagnosis.

© 2010 OSA

OCIS Codes
(320.5520) Ultrafast optics : Pulse compression
(180.4315) Microscopy : Nonlinear microscopy
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: May 11, 2010
Revised Manuscript: June 8, 2010
Manuscript Accepted: June 11, 2010
Published: June 28, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Xiaobao Liang, Wenyan Hu, and Ling Fu, "Pulse compression in two-photon excitation fluorescence microscopy," Opt. Express 18, 14893-14904 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009). [CrossRef]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005). [CrossRef] [PubMed]
  5. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996). [CrossRef]
  6. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006). [CrossRef] [PubMed]
  7. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998). [CrossRef] [PubMed]
  8. R. Du, R. Jiang, and L. Fu, “Enhanced dispersion compensation capability of angular elements based on beam expansion,” Opt. Express 17(19), 16415–16422 (2009). [CrossRef] [PubMed]
  9. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006). [CrossRef] [PubMed]
  10. A. M. Larson and A. T. Yeh, “Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16(19), 14723–14730 (2008). [CrossRef] [PubMed]
  11. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999). [CrossRef]
  12. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008). [CrossRef]
  13. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000). [CrossRef]
  14. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982). [CrossRef]
  15. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984). [CrossRef]
  16. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  17. F. Druon and P. Georges, “Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm,” Opt. Express 12(15), 3383–3396 (2004). [CrossRef] [PubMed]
  18. S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001). [CrossRef]
  19. A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997). [CrossRef]
  20. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  21. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]
  22. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  23. S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003). [CrossRef]
  24. G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004). [CrossRef] [PubMed]
  25. G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006). [CrossRef] [PubMed]
  26. G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B 78(5), 557–563 (2004). [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  28. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969). [CrossRef]
  29. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002). [CrossRef] [PubMed]
  30. K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005). [CrossRef]
  31. A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009). [CrossRef]
  32. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999). [CrossRef]
  33. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001). [CrossRef] [PubMed]
  34. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000). [CrossRef] [PubMed]
  35. Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007). [CrossRef]
  36. D. Li, S. Zeng, Q. Luo, P. Bowlan, V. Chauahan, and R. Trebino, “Propagation dependence of chirp in Gaussian pulses and beams due to angular dispersion,” Opt. Lett. 34(7), 962–964 (2009). [CrossRef] [PubMed]
  37. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, Multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16(19), 14341–14352 (2008). [CrossRef] [PubMed]
  38. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (441 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited