OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14950–14959

Isotropic non-ideal cloaks providing improved invisibility by adaptive segmentation and optimal refractive index profile from ordering isotropic materials

C. W. Qiu, L. Hu, and S. Zouhdi  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14950-14959 (2010)
http://dx.doi.org/10.1364/OE.18.014950


View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mimicking the ideal cloak, which is anisotropic and inhomogeneous, can be achieved by alternating homogeneous isotropic materials, whose permittivity and permeability of each isotropic coating can be determined from effective medium theory. An improved two-fold method is proposed by optimally discretizing the cloak and re-ordering the combination of the effective parameters of each layer to form a smooth step-index profile. The roles of impedance matching and index matching are investigated for cloaking effects. Smoothing the index profile leads to better invisibility than that obtained by smoothing the impedance profile, since the forward scattering can be further diminished. Nonlinear-transformation-based spherical ideal cloaks are studied, and improved design method is explored together with different segmentation schemes. Significant improvement in invisibility is always observed for the optimal segmentation in virtual space with the proposed two-fold design method no matter how nonlinear the coordinate transformation is.

© 2010 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.3205) Optical devices : Invisibility cloaks
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

History
Original Manuscript: December 1, 2009
Revised Manuscript: December 25, 2009
Manuscript Accepted: December 25, 2009
Published: June 29, 2010

Citation
C.W. Qiu, L. Hu, and S. Zouhdi, "Isotropic non-ideal cloaks providing improved invisibility by adaptive segmentation and optimal refractive index profile from ordering isotropic materials," Opt. Express 18, 14950-14959 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt,“Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  4. G.W. Milton,M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006). [CrossRef]
  5. A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  6. A. Alu and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318 – 3332 (2007). [CrossRef] [PubMed]
  7. L. Gao, T. H. Fung, K. W. Yu, and C.-W. Qiu, “Electromagnetic transparency by coated spheres with radial anisotropy,” Phys. Rev. E 78, 046609 (2008). [CrossRef]
  8. X. Cai, Q. Deng, and G. Hu, “Experimental study on electromagnetic wave transparency for coated metallic cylinders,” J. Appl. Phys. 105, 103112 (2009). [CrossRef]
  9. D. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92, 013505 (2008). [CrossRef]
  10. W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng and J. Y. Chin, “Arbitrarily ellipticalCcylindrical invisible cloaking,” J. Phys. D: Appl. Phys. 41, 085504 (2008). [CrossRef]
  11. C. W. Qiu, A. Novitsky, H. Ma, and S. Qu, “Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloak,” Phys. Rev. E 80, 016604 (2009). [CrossRef]
  12. Y. You, G. W. Kattawar, P. W. Zhai, and P. Yang, “Invisibility cloaks for irregular particles using coordinate transformations,” Opt. Express 16, 6134 - 6145 (2008). [CrossRef] [PubMed]
  13. H. Ma, S. Qu, Z. Xu, and J. Wang, “Approximation approach of designing practical cloaks with arbitrary shapes,” Opt. Express 16, 15449 - 15454 (2008). [CrossRef] [PubMed]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977 (2006). [CrossRef] [PubMed]
  15. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef] [PubMed]
  16. A. Novitsky, C. W. Qiu, and S. Zouhdi, “Transformation-based spherical cloaks designed by an implicit transformation-independent method: Theory and optimization,” New J. Phys. 11, 113001 (2009). [CrossRef]
  17. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  18. C. W. Qiu, L. W. Li, T. S. Yeo, and S. Zouhdi, “Scattering by rotationally symmetric anisotropic spheres: Potential formulation and parametric studies,” Phys. Rev. E 75, 026609 (2007). [CrossRef]
  19. B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008). [CrossRef] [PubMed]
  20. W. Cai, U. K. Chettiar, A. K. Kildishev, G. W. Milton, and V. M. Shalaev, “Non-magnetic cloak without reflection,” arXiv:0707.3641v1.
  21. R. Weder, “A rigorous analysis of high-order electromagnetic invisibility cloaks,” J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]
  22. C. W. Qiu, L. Hu, X. Xu, and Y. Feng, “Spherical cloaking with homogeneous isotropic multilayered structures,” Phys. Rev. E 79, 047602 (2009). [CrossRef]
  23. M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmissionline matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55, 2930-2941 (2007). [CrossRef]
  24. P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antennas Propagat. 56, 416-424 (2008). [CrossRef]
  25. J. C. E. Sten, “DC fields and analytical image solutions for a radially anisotropic spherical conductor,” IEEE Trans. Diel. Elec. Insul. 2, 360-367 (1995). [CrossRef]
  26. B. I. Popa and S. A. Cummer, “Cloaking with optimized homogeneous anisotropic layers,” Phys. Rev. A 79, 023806 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited