OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14960–14968

Soliton self-frequency shift performance in As2S3 waveguides

Alexander C. Judge, Stephen A. Dekker, Ravi Pant, C. Martijn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 14960-14968 (2010)
http://dx.doi.org/10.1364/OE.18.014960


View Full Text Article

Enhanced HTML    Acrobat PDF (3297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The soliton self-frequency shift in As2S3 is investigated theoretically. Detailed simulation under realistic conditions of the propagation of a low peak power pulse in a chalcogenide ridge waveguide shows the concepts of Raman soliton behaviour in silica to be transferrable to As2S3. Quantitatively, differences in the shapes of the Raman spectra in silica and As2S3 are predicted to lead to variations of less than 25 % in the frequency shift rate of a fundamental soliton. Thus we predict the effectiveness of the soliton self-frequency shift in contributing to wide bandwidth generation in low-power supercontinua at mid-infrared wavelengths in this highly nonlinear chalcogenide, as well as other nonlinear processing applications such as digital quantization for optical analogue to digital conversion.

© 2010 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(160.4330) Materials : Nonlinear optical materials
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 1, 2010
Revised Manuscript: June 18, 2010
Manuscript Accepted: June 23, 2010
Published: June 29, 2010

Citation
Alexander C. Judge, Stephen A. Dekker, Ravi Pant, C. Martijn de Sterke, and Benjamin J. Eggleton, "Soliton self-frequency shift performance in As2S3 waveguides," Opt. Express 18, 14960-14968 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-14960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999). [CrossRef]
  2. J. Gopinath, M. Soljačić, E. Ippen, V. Fuflyigin, W. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96, 6931 (2004).
  3. M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, and D. Bulla, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3, 139–143 (2009). [CrossRef]
  4. J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol. 28, 209–215 (2010). [CrossRef]
  5. A. V. Husakou, and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003). [CrossRef]
  6. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Generating mid-IR source using As2S3-based chalcogenide photonic crystal fibers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, (Optical Society of America, 2009), p. CThN6.
  7. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010). [CrossRef] [PubMed]
  8. B. Shaw, P. Thielen, F. Kung, V. Nguyen, J. Sanghera, and I. Aggarwal, “IR supercontinuum generation in As-Se photonic crystal fiber,” in “Advanced Solid-State Photonics,” (Optical Society of America, 2005), p. TuC5.
  9. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15, 15776–15781 (2007). [CrossRef] [PubMed]
  10. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008). [CrossRef] [PubMed]
  11. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear γ = 10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008). [CrossRef] [PubMed]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  13. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  14. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: Experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008). [CrossRef]
  15. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003). [CrossRef] [PubMed]
  16. R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283, 2258–2262 (2010). [CrossRef]
  17. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973). [CrossRef]
  18. R. J. Kobliska and S. A. Solin, “Temperature dependence of the Raman spectrum and the depolarization spectrum of amorphous As2S3,” Phys. Rev. B 8, 756–768 (1973). [CrossRef]
  19. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  20. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007). [CrossRef] [PubMed]
  21. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]
  22. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  23. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef] [PubMed]
  24. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  25. R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975). [CrossRef]
  26. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48, 5467–5474 (2009). [CrossRef] [PubMed]
  27. M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007). [CrossRef] [PubMed]
  28. O. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003). [CrossRef]
  29. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76, 053803 (2007). [CrossRef]
  30. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single–mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  31. V. K. Tikhomirov, L. F. Santos, R. M. Almeida, A. Jha, J. Kobelke, and M. Scheffler, “On the origin of the boson peak in the raman scattering spectrum of As2S3 glass,” J. Non-Cryst. Solids 284, 198–202 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited