OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 14992–15002

Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties

R. Boulesteix, A. Maître, J.-F. Baumard, Y. Rabinovitch, and F. Reynaud  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 14992-15002 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2044 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nd:YAG ceramics for laser applications were elaborated with various residual porosities by reaction-sintering process. The porosity analysis with CLSM and SEM led to the determination of the pore volume fraction after sintering. This study revealed that the mean pore size of Nd:YAG ceramics was around 0.7 µm while the residual porosity was ranging between 10−1% and 10−4%. These pore contents affect the transparency and laser efficiency of ceramics. The analytical model based on the Mie light scattering fairly fits the experimental data. This demonstrates that the porosity in Nd:YAG ceramics should be lower than 10−4% to reach single-crystal laser efficiency.

© 2010 OSA

OCIS Codes
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.3380) Materials : Laser materials
(180.6900) Microscopy : Three-dimensional microscopy
(290.0290) Scattering : Scattering

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 26, 2010
Revised Manuscript: June 1, 2010
Manuscript Accepted: June 13, 2010
Published: June 29, 2010

R. Boulesteix, A. Maître, J.-F. Baumard, Y. Rabinovitch, and F. Reynaud, "Light scattering by pores in transparent Nd:YAG ceramics for lasers: correlations between microstructure and optical properties," Opt. Express 18, 14992-15002 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000). [CrossRef]
  2. S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006). [CrossRef]
  3. A. Ikesue and Y. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006). [CrossRef]
  4. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995). [CrossRef]
  5. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995). [CrossRef]
  6. B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009). [CrossRef]
  7. A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009). [CrossRef]
  8. R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009). [CrossRef]
  9. R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009). [CrossRef]
  10. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997). [CrossRef]
  11. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004). [CrossRef]
  12. R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).
  13. Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008). [CrossRef]
  14. M. Rahaman, Sintering of Ceramics, ed., (CRC Press, New York, 2008).
  15. I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008). [CrossRef]
  16. A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003). [CrossRef]
  17. R. Apetz and M. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003). [CrossRef]
  18. R. Dobbins and G. Jizmagian, “Particle size measurements based on use of mean scattering cross sections,” J. Opt. Soc. Am. B 56(10), 1351–1352 (1966). [CrossRef]
  19. R. Dobbins and G. Jizmagian, “Optical scattering cross sections for polydispersions of dielectric spheres,” J. Opt. Soc. Am. B 56(10), 1345–1349 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited