OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15039–15053

Theory of plasmonic Fabry-Perot nanolasers

Shu-Wei Chang, Tzy-Rong Lin, and Shun Lien Chuang  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 15039-15053 (2010)
http://dx.doi.org/10.1364/OE.18.015039


View Full Text Article

Enhanced HTML    Acrobat PDF (1937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Semiconductor plasmonic lasers at submicron and nanometer scales exhibit many characteristics distinct from those of their conventional counterparts at micron scales. The differences originate from their small sizes and the presence of metal plasma surrounding the cavity. To design a laser of this type, features such as metal dispersion, optical energy confinement, and group velocity have to be taken into account properly. In this paper, we provide a comprehensive approach to the design and performance evaluation of plasmonic Fabry-Perot nanolasers. In particular, we show the proper procedure to obtain the key parameters, especially the quality factor and threshold gain, which are usually neglected in conventional semiconductor Fabry-Perot lasers but become important for nanolasers.

© 2010 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5403) Optoelectronics : Plasmonics
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optoelectronics

History
Original Manuscript: May 17, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 21, 2010
Published: June 29, 2010

Citation
Shu-Wei Chang, Tzy-Rong Lin, and Shun Lien Chuang, "Theory of Plasmonic Fabry-Perot Nanolasers," Opt. Express 18, 15039-15053 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-15039


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  3. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  4. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009). [CrossRef] [PubMed]
  5. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010). [CrossRef]
  6. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1004–1013 (2009). [CrossRef]
  7. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003). [CrossRef]
  8. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007). [CrossRef]
  9. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16, 10580–10595 (2008). [CrossRef] [PubMed]
  10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  11. A. Kapoor and G. S. Singh, “Mode classification in cylindrical dielectric waveguide,” J. Lightwave Technol. 18, 849 (2000). [CrossRef]
  12. C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986). [CrossRef]
  13. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997). [CrossRef]
  14. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  15. COMSOL Inc, http://www.comsol.com.
  16. C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009). [CrossRef]
  17. S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34, 91–93 (2009). [CrossRef]
  18. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17, 1144 (2009). [CrossRef] [PubMed]
  19. E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992). [CrossRef]
  20. Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited