OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15054–15061

Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging

Rick Bezemer, Matthieu Legrand, Eva Klijn, Michal Heger, Ivo C. J. H. Post, Thomas M. van Gulik, Didier Payen, and Can Ince  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15054-15061 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1033 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser speckle imaging (LSI) is able to provide full-field perfusion maps of the renal cortex and allows quantification of the average LSI perfusion within an arbitrarily set region of interest and the recovery of LSI perfusion histograms within this region. The aim of the present study was to evaluate the use of LSI for mapping renal cortical microvascular perfusion and to demonstrate the capability of LSI to assess renal perfusion heterogeneities. The main findings were that: 1) full-field LSI measurements of renal microvascular perfusion were highly correlated to single-point LDV measurements; 2) LSI is able to detect differences in reperfusion dynamics following different durations of ischemia; and 3) renal microvascular perfusion heterogeneities can be quantitatively assessed by recovering LSI perfusion histograms.

© 2010 OSA

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 11, 2010
Revised Manuscript: May 6, 2010
Manuscript Accepted: May 12, 2010
Published: June 30, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Rick Bezemer, Matthieu Legrand, Eva Klijn, Michal Heger, Ivo C. J. H. Post, Thomas M. van Gulik, Didier Payen, and Can Ince, "Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging," Opt. Express 18, 15054-15061 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005). [PubMed]
  2. A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999). [CrossRef] [PubMed]
  3. S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005). [CrossRef] [PubMed]
  4. M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008). [CrossRef] [PubMed]
  5. M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009). [CrossRef] [PubMed]
  6. L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006). [CrossRef] [PubMed]
  7. T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002). [PubMed]
  8. J. V. Bonventre and J. M. Weinberg, “Recent advances in the pathophysiology of ischemic acute renal failure,” J. Am. Soc. Nephrol. 14(8), 2199–2210 (2003). [CrossRef] [PubMed]
  9. R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004). [CrossRef] [PubMed]
  10. P. M. O’Connor, “Renal oxygen delivery: matching delivery to metabolic demand,” Clin. Exp. Pharmacol. Physiol. 33(10), 961–967 (2006). [CrossRef] [PubMed]
  11. C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006). [CrossRef] [PubMed]
  12. J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009). [CrossRef] [PubMed]
  13. A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008). [CrossRef] [PubMed]
  14. J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000). [CrossRef] [PubMed]
  15. J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004). [CrossRef] [PubMed]
  16. R. N. Raman, C. D. Pivetti, D. L. Matthews, C. Troppmann, and S. G. Demos, “A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy,” Opt. Express 17(2), 894–905 (2009). [CrossRef] [PubMed]
  17. R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010). [CrossRef] [PubMed]
  18. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R01–R66 (2001). [CrossRef]
  19. Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007). [CrossRef]
  20. H. Cheng, Q. Luo, Z. Wang, H. Gong, S. Chen, W. Liang, and S. Zeng, “Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging,” Appl. Opt. 42(28), 5759–5764 (2003). [CrossRef] [PubMed]
  21. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004). [CrossRef] [PubMed]
  22. B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).
  23. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  24. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002). [CrossRef]
  25. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005). [CrossRef] [PubMed]
  26. A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003). [CrossRef] [PubMed]
  27. T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009). [CrossRef]
  28. T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited