OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15062–15072

High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems

P. A. Berry and K. L. Schepler  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15062-15072 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate high-power Cr2+:ZnSe master oscillator power amplifier (MOPA) pure continuous wave (CW) laser systems with output power of 14 W and amplifier gain greater than 2X. In addition, we develop a theoretical model for this type of amplification and show single-knob tunability at high powers over 400 nm.

© 2010 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 30, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: June 23, 2010
Published: June 30, 2010

P. A. Berry and K. L. Schepler, "High-power, widely-tunable Cr2+:ZnSe
master oscillator power amplifier systems," Opt. Express 18, 15062-15072 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996). [CrossRef]
  2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997). [CrossRef]
  3. I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr2+:ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002). [CrossRef]
  4. U. Hömmerich, X. Wu, V. R. Davis, S. B. Trivedi, K. Grasza, R. J. Chen, and S. Kutcher, “Demonstration of room-temperature laser action at 2.5 mum from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett. 22(15), 1180–1182 (1997). [CrossRef] [PubMed]
  5. J. McKay, K. L. Schepler, and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Opt. Lett. 24(22), 1575–1577 (1999). [CrossRef]
  6. U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm,” Opt. Lett. 31(15), 2293–2295 (2006). [CrossRef] [PubMed]
  7. I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater. 26(4), 395–412 (2004). [CrossRef]
  8. I. S. Moskalev, V. V. Fedorov, S. B. Mirov, P. A. Berry, and K. L. Schepler, “12-Watt CW Polycrystalline Cr2+:ZnSe Laser Pumped by Tm-fiber Laser,” in Advanced Solid State Photonics(Optical Society of America, Denver, CO, 2008), p. WB30.
  9. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” in Solid State Lasers and Amplifiers, A. Sennaroglu, J. G. Fujimoto, and C. R. Pollock, eds. (SPIE, Bellingham, WA, 2004), pp. 74–82.
  10. G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-Frequency Cr:ZnSe Laser,” in Advanced Solid-State Photonics(Optical Society of America, 2004), p. WB12.
  11. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad Continuous-Wave Tuning of Ceramic Cr:ZnSe and Cr:ZnS Lasers,” in Advanced Solid-State Photonics(Optical Society of America, 2010), p. AMC2.
  12. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “10-watt, pure continuous-wave, polycrystalline Cr2+:ZnS laser,” Opt. Express 17(4), 2048–2056 (2009). [CrossRef] [PubMed]
  13. R. J. Harris, G. T. Johnston, G. A. Kepple, P. C. Krok, and H. Mukai, “Infrared thermooptic coefficient measurement of polycrystalline ZnSe, ZnS, CdTe, CaF2, and BaF2, single crystal KCI, and TI-20 glass,” Appl. Opt. 16(2), 436–438 (1977). [CrossRef] [PubMed]
  14. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared Optical Breakdown in Transparent Dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003). [CrossRef] [PubMed]
  15. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe Thin Disk Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 713–720 (2005). [CrossRef]
  16. P. A. Berry, and K. L. Schepler, “Cr2+:ZnSe master oscillator / power amplifier for improved power scaling,” in Solid State Lasers XIX: Technology and Devices(SPIE, San Francisco, California, USA, 2010), pp. 75781L–75711.
  17. A. Sennaroglu, U. Demirbas, A. Kurt, and M. Somer, “Concentration dependence of fluorescence and lasing efficiency in Cr2+:ZnSe lasers,” Opt. Mater. 29(6), 703–708 (2007). [CrossRef]
  18. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8(3), 373–379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1732 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited