OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15073–15093

Spectral backscattering properties of marine phytoplankton cultures

Amanda L. Whitmire, W. Scott Pegau, Lee Karp-Boss, Emmanuel Boss, and Timothy J. Cowles  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15073-15093 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The backscattering properties of marine phytoplankton, which are assumed to vary widely with differences in size, shape, morphology and internal structure, have been directly measured in the laboratory on a very limited basis. This work presents results from laboratory analysis of the backscattering properties of thirteen phytoplankton species from five major taxa. Optical measurements include portions of the volume scattering function (VSF) and the absorption and attenuation coefficients at nine wavelengths. The VSF was used to obtain the backscattering coefficient for each species, and we focus on intra- and interspecific variability in spectral backscattering in this work. Ancillary measurements included chlorophyll-a concentration, cell concentration, and cell size, shape and morphology via microscopy for each culture. We found that the spectral backscattering properties of phytoplankton deviate from theory at wavelengths where pigment absorption is significant. We were unable to detect an effect of cell size on the spectral shape of backscattering, but we did find a relationship between cell size and both the backscattering ratio and backscattering cross-section. While particulate backscattering at 555 nm was well correlated to chlorophyll-a concentration for any given species, the relationship was highly variable between species. Results from this work indicate that phytoplankton cells may backscatter light at significantly higher efficiencies than what is predicted by Mie theory, which has important implications for closing the underwater and remotely sensed light budget.

© 2010 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(290.5850) Scattering : Scattering, particles
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 1, 2010
Revised Manuscript: June 2, 2010
Manuscript Accepted: June 4, 2010
Published: June 30, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Amanda L. Whitmire, W. Scott Pegau, Lee Karp-Boss, Emmanuel Boss, and Timothy J. Cowles, "Spectral backscattering properties of marine phytoplankton cultures," Opt. Express 18, 15073-15093 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975). [CrossRef] [PubMed]
  2. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  3. T. Dickey, M. Lewis, and G. Chang, “Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations,” Rev. Geophys. 44(1), RG1001 (2006), doi:. [CrossRef]
  4. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004). [CrossRef]
  5. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18(5), 585–588 (1979). [CrossRef] [PubMed]
  6. M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34(8), 1587–1600 (1989). [CrossRef]
  7. J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992). [CrossRef]
  8. A. Quirantes and S. Bernard, “Light scattering by marine algae: two-layer spherical and nonspherical models,” J. Quant. Spectrosc. Radiat. Transf. 89(1-4), 311–321 (2004). [CrossRef]
  9. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent Optical Properties of Non-Spherical Marine-Like Particles - From Theory to Observations,” Oceanography and Marine Biology: An Annual Review 45, 1–38 (2007). [CrossRef]
  10. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28(11), 1375–1393 (1981). [CrossRef]
  11. A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28(5), 816–832 (1983). [CrossRef]
  12. A. Bricaud and A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25(4), 571–580 (1986). [CrossRef] [PubMed]
  13. A. Morel and A. Bricaud, “Inherent optical properties of algal cells, including picoplankton. Theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).
  14. A. Morel and Y.-H. Ahn, “Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters,” J. Mar. Res. 48(1), 145–175 (1990). [CrossRef]
  15. A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991). [CrossRef]
  16. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991). [CrossRef]
  17. Y.-H. Ahn, A. Bricaud, and A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39(11–12), 1835–1855 (1992). [CrossRef]
  18. D. Stramski and C. D. Mobley, “Effects of microbial particles on oceanic optics: A database of single-particle optical properties,” Limnol. Oceanogr. 42(3), 538–549 (1997). [CrossRef]
  19. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community,” Appl. Opt. 40(18), 2929–2945 (2001). [CrossRef]
  20. H. Volten, J. F. Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory Measurements of Angular Distributions of Light Scattered by Phytoplankton and Silt,” Limnol. Oceanogr. 43(6), 1180–1197 (1998). [CrossRef]
  21. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition, and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004). [CrossRef]
  22. C. S. Yentsch and D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).
  23. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997). [CrossRef] [PubMed]
  24. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, ““Scattering error correction of reflecting tube absorption meter,” Ocean Optics XII,” Proc. SPIE 2258, 44–55 (1994). [CrossRef]
  25. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36(24), 6057–6067 (1997). [CrossRef] [PubMed]
  26. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001). [CrossRef]
  27. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “Optical properties of pure water,” Ocean Optics XII, Proc. SPIE 2258 (1994).
  28. T. Oishi, “Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120°,” Appl. Opt. 29(31), 4658–4665 (1990). [CrossRef] [PubMed]
  29. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the “clearest” natural waters,” Biogeosci. 4(6), 1041–1058 (2007), www.biogeosciences.net/4/1041/2007 . [CrossRef]
  30. E. Boss, W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “The particulate backscattering ratio at LEO-15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004), doi:. [CrossRef]
  31. J. J. Walsh, J. K. Jolliff, B. P. Darrow, J. M. Lenes, S. P. Milroy, A. Remsen, D. A. Dieterle, K. L. Carder, F. R. Chen, G. A. Vargo, R. H. Weisberg, K. A. Fanning, F. E. Muller-Karger, E. Shinn, K. A. Steidinger, C. A. Heil, C. R. Tomas, J. S. Prospero, T. N. Lee, G. J. Kirkpatrick, T. E. Whitledge, D. A. Stockwell, T. A. Villareal, A. E. Jochens, and P. S. Bontempi, “Red tides in the Gulf of Mexico: Where, when, and why?” J. Geophys. Res. 111(C11C11003), 1–46 (2006). [CrossRef] [PubMed]
  32. J.-F. Berthon, E. Shybanov, M. E.-G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46(22), 5189–5203 (2007). [CrossRef] [PubMed]
  33. D. Stramski, M. Babin, and S. B. Woźniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52, 2418–2433 (2007). [CrossRef]
  34. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48(35), 6811–6819 (2009). [CrossRef] [PubMed]
  35. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Contract No. N62269–71-C-0676, UCSD, SIO Ref. 72–78 (1972).
  36. C. Moore, M. S. Twardowski, and J. R. V. Zaneveld, “The ECO-VSF: a multiangle scattering sensor for determination of the volume scattering function in the backward direction,” presented at Ocean Optics XV, Monaco (2000).
  37. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, “Use of optical scattering to discriminate particle types in coastal waters,” Appl. Opt. 44(9), 1667–1680 (2005). [CrossRef] [PubMed]
  38. J. Prentice, A. D. Weidemann, W. S. Pegau, K. J. Voss, M. Lee, E. Shybanov, O. Martynov, A. Laux, A. L. Briggs, and G. Chang, “Laboratory comparisons of optical scattering instrumentation,” Ocean Optics XVI, Santa Fe, NM (2002).
  39. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20(4), 563–671 (2003). [CrossRef]
  40. A. Bricaud, A. L. Bedhomme, and A. Morel, “Optical properties of diverse phytoplanktonic species: Experimental results and theoretical interpretation,” J. Plankton Res. 10(5), 851–873 (1988). [CrossRef]
  41. E. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007). [CrossRef]
  42. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007). [CrossRef] [PubMed]
  43. G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosci. 6(6), 947–967 (2009). [CrossRef]
  44. A. Morel, “The scattering of light by seawater, experimental results and theoretical approach,” (translated from French), in AGARD Lect. Ser., pp. 3.1.1.-3.1.76 (1973).
  45. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  46. H. Loisel and D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000). [CrossRef]
  47. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996). [CrossRef]
  48. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosci. 5(2), 495–507 (2008). [CrossRef]
  49. R. F. Davis, C. C. Moore, J. R. V. Zaneveld, and J. M. Napp, “Reducing the effects of fouling on chlorophyll estimates derived from long-term deployments of optical instruments,” J. Geophys. Res. 102(C3), 5851–5855 (1997). [CrossRef]
  50. A. L. Whitmire, “The spectral backscattering properties of marine particles,” Ph.D. dissertation, Oregon State University, 2008. ScholarsArchive@OSU, 28 Oct. 2008 < http://hdl.handle.net/1957/9088 >.
  51. K. Witkowski, T. Krol, A. Zielinski, and E. Kuten, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43(5), 859–869 (1998). [CrossRef]
  52. L. E. Graham, and L. W. Wilcox, Algae (Prentice Hall, 2000).
  53. Y. Bhaud, D. Guillebault, J. Lennon, H. Defacque, M. O. Soyer-Gobillard, and H. Moreau, “Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis,” J. Cell Sci. 113(Pt 7), 1231–1239 (2000). [PubMed]
  54. A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105(1), 236–245 (2007). [CrossRef]
  55. M. A. Faust, “Structure of the periplast of Cryptomonas ovata var. palustris,” J. Phycol. 10, 121–124 (1974).
  56. U. J. Santore, “Some aspects of taxonomy in the Cryptophyceae,” New Phytol. 98(4), 627–646 (1984). [CrossRef]
  57. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42(18), 3634–3646 (2003). [CrossRef] [PubMed]
  58. G. A. Jackson, R. Maffione, D. K. Costello, A. L. Alldredge, B. E. Logan, and H. G. Dam, “Particle size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments,” Deep-Sea Res. 44(11), 1739–1767 (1997), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited