OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15094–15103

Single exposure super-resolution compressive imaging by double phase encoding

Yair Rivenson, Adrian Stern, and Bahram Javidi  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15094-15103 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Super-resolution is an important goal of many image acquisition systems. Here we demonstrate the possibility of achieving super-resolution with a single exposure by combining the well known optical scheme of double random phase encoding which has been traditionally used for encryption with results from the relatively new and emerging field of compressive sensing. It is shown that the proposed model can be applied for recovering images from a general image degrading model caused by both diffraction and geometrical limited resolution.

© 2010 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution

ToC Category:
Image Processing

Original Manuscript: April 7, 2010
Revised Manuscript: June 18, 2010
Manuscript Accepted: June 23, 2010
Published: June 30, 2010

Yair Rivenson, Adrian Stern, and Bahram Javidi, "Single exposure super-resolution compressive imaging by double phase encoding," Opt. Express 18, 15094-15103 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Park, M. Park, and M. Gang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003). [CrossRef]
  2. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer-Verlag, 2003).
  3. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004). [CrossRef] [PubMed]
  4. S. Prasad and X. Luo, “Support-assisted optical superresolution of low-resolution image sequences: the one-dimensional problem,” Opt. Express 17(25), 23213–23233 (2009). [CrossRef]
  5. A. Stern, Y. Porat, A. Ben-Dor, and N. S. Kopeika, “Enhanced-resolution image restoration from a sequence of low-frequency vibrated images by use of convex projections,” Appl. Opt. 40(26), 4706–4715 (2001). [CrossRef]
  6. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005). [CrossRef] [PubMed]
  7. A. Borkowski, Z. Zalevsky, and B. Javidi, “Geometrical superresolved imaging using nonperiodic spatial masking,” J. Opt. Soc. Am. A 26(3), 589–601 (2009). [CrossRef]
  8. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995). [CrossRef] [PubMed]
  9. B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36(5), 1054–1058 (1997). [CrossRef] [PubMed]
  10. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEEl 97(6), 1128–1148 (2009). [CrossRef]
  11. E. Tajahuerce, O. Matoba, S. C. Verrall, and B. Javidi, “Optoelectronic information encryption with phase-shifting interferometry,” Appl. Opt. 39(14), 2313–2320 (2000). [CrossRef]
  12. E. Tajahuerce, J. Lancis, P. Andres, V. Climent, and B. Javidi, “Optoelectronic Information Encryption with Incoherent Light,” in Optical and Digital Techniques for Information Security, B. Javidi, ed. (Springer-Verlag, 2004).
  13. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24(11), 762–764 (1999). [CrossRef]
  14. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000). [CrossRef]
  15. P. C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25(8), 566–568 (2000). [CrossRef]
  16. B. M. Hennelly, T. J. Naughton, J. McDonald, J. T. Sheridan, G. Unnikrishnan, D. P. Kelly, and B. Javidi, “Spread-space spread-spectrum technique for secure multiplexing,” Opt. Lett. 32(9), 1060–1062 (2007). [CrossRef] [PubMed]
  17. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38(35), 7288–7293 (1999). [CrossRef]
  18. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39(35), 6595–6601 (2000). [CrossRef]
  19. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40(14), 2310–2315 (2001). [CrossRef]
  20. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  21. E. Candes and M. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008). [CrossRef]
  22. T. Do, T. Tran, and L. Gan, “Fast compressive sampling with structurally random matrices,” in Proc. ICASSP, 3369–3372, (2008).
  23. J. Romberg, “Compressive sensing by random convolution,” SIAM J. Imaging Sci. 2(4), 1098–1128 (2009). [CrossRef]
  24. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel Holography,” to appear in IEEE/OSA J. on Display Technology, (2010).
  25. A. Stern and B. Javidi, “Random projections imaging with extended space-bandwidth product,” IEEE/OSA Journal on Display Technology, 3(3), 315–320 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited