OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15122–15129

Statistics of crosstalk in bent multicore fibers

John M. Fini, Benyuan Zhu, Thierry F. Taunay, and Man F. Yan  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15122-15129 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A statistical theory for crosstalk in multicore fibers is derived from coupled-mode equations including bend-induced perturbations. Bends are shown to play a crucial role in crosstalk, explaining large disagreement between experiments and previous calculations. The average crosstalk of a fiber segment is related to the statistics of the bend radius and orientation, including spinning along the fiber length. This framework allows efficient and accurate estimates of cross-talk for realistic telecommunications links.

© 2010 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 16, 2010
Revised Manuscript: June 7, 2010
Manuscript Accepted: June 23, 2010
Published: June 30, 2010

John M. Fini, Benyuan Zhu, Thierry F. Taunay, and Man F. Yan, "Statistics of crosstalk in bent multicore fibers," Opt. Express 18, 15122-15129 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.
  2. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel Transmission of a Multicore Fiber Coupled with Vertical-Cavity Surface-Emitting Lasers,” J. Lightwave Technol. 17(5), 807–810 (1999). [CrossRef]
  3. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010). [CrossRef]
  4. G. Le Noane, P. Grosso, and I. Hardy, “Small, high precision, multicore optical guides and process for the production of said guides,” US Patent 5519801 (1996).
  5. K. Imamura, K. Mukasa, and T. Yagi, “Investigation on Multi-Core Fibers with Large Aeff and Low Micro Bending Loss,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK6.
  6. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Low cross-talk design of multi-core fibers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuAA3.
  7. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Bends in the design of low-crosstalk multicore fiber communications links,” to be published in the 15th OptoElectronics and Communications Conference 2010.
  8. S. Kumar, U. H. Manyam, and V. Srikant, “Optical fibers having cores with different propagation constants, and methods of manufacturing same,” US Patent 6611648 (2003).
  9. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982). [CrossRef] [PubMed]
  10. K. Petermann and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986). [CrossRef]
  11. J. W. Nicholson, J. M. Fini, A. D. Yablon, P. S. Westbrook, K. Feder, and C. Headley, “Demonstration of bend-induced nonlinearities in large-mode-area fibers,” Opt. Lett. 32(17), 2562–2564 (2007). [CrossRef] [PubMed]
  12. K. S. Shanmugan, and A. M. Breipohl, Random Signals (John Wiley and Sons, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited