OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15155–15168

Interaction of a single-cycle laser pulse with a bound electron without ionization

Ufuk Parali and Dennis R. Alexander  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 15155-15168 (2010)
http://dx.doi.org/10.1364/OE.18.015155


View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, interaction of an ultrashort single-cycle pulse (USCP) with a bound electron without ionization is reported for the first time. For a more realistic mathematical description of USCPs, Hermitian polynomials and combination of Laguerre functions are used for two different single cycle excitation cases. These single cycle pulse models are used as driving functions for the classical approach to model the interaction of a bound electron with an applied electric field. A new novel time-domain technique was developed for modifying the classical Lorentz damped oscillator model in order to make it compatible with USCP excitation. This modification turned the Lorentz oscillator model equation into a Hill-like function with non-periodic time varying damping and spring coefficients. Numerical results are presented for two different excitation models and for varying spring and damping constants. Our two driving model excitations provide quite different time response of the bound electron. Different polarization response will subsequently result in relative differences in the time dependent index of refraction.

© 2010 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(260.5430) Physical optics : Polarization
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5550) Ultrafast optics : Pulses
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 6, 2010
Revised Manuscript: June 17, 2010
Manuscript Accepted: June 18, 2010
Published: June 30, 2010

Citation
Ufuk Parali and Dennis R. Alexander, "Interaction of a single-cycle laser pulse with a bound electron without ionization," Opt. Express 18, 15155-15168 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-15155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Couairon, J. Biegert, C. P. Hauri, W. Kornelis, F. W. Helbing, U. Keller, and A. Mysyrowicz, “Self-compression of ultrashort laser pulses down to one optical cycle by filamentation,” J. Mod. Opt. 53(1–2), (2006).
  2. M. A. Porras, “Nonsinusoidal few-cycle pulsed light beams in free space,” J. Opt. Soc. Am. B 16(9), 1468 (1999). [CrossRef]
  3. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3(6), 381–387 (2007). [CrossRef]
  4. A. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000). [CrossRef]
  5. H. Niikura, F. Légaré, R. Hasbani, A. D. Bandrauk, M. Y. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Sub-laser-cycle electron pulses for probing molecular dynamics,” Nature 417(6892), 917–922 (2002). [CrossRef] [PubMed]
  6. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004). [CrossRef] [PubMed]
  7. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]
  8. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, “Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient,” Opt. Lett. 30(19), 2657–2659 (2005). [CrossRef] [PubMed]
  9. Y. Yan, E. B. Gamble, and K. A. Nelson, “Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications,” J. Chem. Phys. 83(11), 5391 (1985). [CrossRef]
  10. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999). [CrossRef] [PubMed]
  11. K. Akimoto, Properties and Applications of ultrashort electromagnetic mono- and sub- cycle waves. Journal ofthe Physical Society of Japan, Vol. 65, No. 7, 2020–2032, 1996.
  12. R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett. 16(18), 1412–1414 (1991). [CrossRef] [PubMed]
  13. S. L. Dvorak, D. G. Dudley. Propagation of ultrawideband electromagnetic pulses through dispersive media. IEEE Transaction of Electromagnetic Compatibility, Vol. 37. No. 2, May 1995.
  14. S. A. Kozlov and S. V. Sazanov, “Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media,” Sov. Phys. JETP 84(2), 221–228 (1997). [CrossRef]
  15. H. Wilkelmsson, J. H. Trombert, and J. F. Eloy, “Dispersive and dissipative medium response to an ultrashort pulse: A green’s function approach,” Phys. Scr. 52(1), 102–107 (1995). [CrossRef]
  16. P. Kinsler and G. H. C. New, “Few-cycle pulse propagation,” Phys. Rev. A 67(2), 023813 (2003). [CrossRef]
  17. J. F. Eloy, and F. Moriamez, Spectral analysis of EM ultrashort pulses at coherence limit. Modelling. SPIE Intense Microwave and Particle Beams III, Vol. 1629, 1992.
  18. J. F. Eloy and H. Wilhelmsson, “Response of a bounded plasma to ultrashort pulse excitation,” Phys. Scr. 55(4), 475–477 (1997). [CrossRef]
  19. M. Pietrzyk, I. Kanattsikov, and U. Bandelow, “On the propagation of vector ultrashort pulses,” J. Nonlinear Math. Phys. 15(2), 162–170 (2008). [CrossRef]
  20. B. Macke and B. Segard, “Propagation of light pulses at a negative group velocity,” Eur. Phys. J. D 23, 125–141 (2003). [CrossRef]
  21. Q. Zou and B. Lu, “Propagation properties of ultrashort pulsed beams with constant waist width in free space,” Opt. Laser Technol. 39(3), 619–625 (2007). [CrossRef]
  22. H. Xiao and K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a casually dispersive, absorptive dielectric,” J. Opt. Soc. Am. B 16(10), 1773 (1999). [CrossRef]
  23. A. L. Gutman, “Electrodynamics of short pulses for pulse durations comparable to relaxation times of a medium,” Dokl. Phys. 43(6), 343–345 (1998).
  24. D. Hovhannisyan, “Propagation of a femtosecond laser pulse of a few optical oscillations in a uniaxial crystal,” Microw. Opt. Technol. Lett. 36(4), 280–285 (2003). [CrossRef]
  25. A. B. Shvartsburg, Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models). Physics – Uspekhi, Vol. 41, No. 1, 77–94, 1998.
  26. Z. Wang, Z. Zhang, Z. Xu, and Q. Lin, “Space-time profiles of an ultrashort pulsed Gaussian beam,” IEEE J. Quantum Electron. 33(4), (1997).
  27. A. B. Shvartsburg, Time-Domain Optics of Ultrashort Waveforms. Clarendon Press, Oxford, 1996.
  28. A. B. Shvartsburg, Impulse Time-Domain Electromagnetic of Continuos Media. Birkhauser Verlag, Boston, 1999.
  29. J. E. Rothenberg, “Space-time focusing: Breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses,” Opt. Lett. 17(19), 1340 (1992). [CrossRef] [PubMed]
  30. H. Kumagai, S. H. Cho, K. Ishikawa, K. Midorikawa, M. Fujimoto, S. Aoshima, and Y. Tsuchiya, “Observation of the comples propagation of a femtosecond laser pulse in a dispersive transparent bulk material,” J. Opt. Soc. Am. 20(3), (2003).
  31. M. D. Crisp, “Propagation of small-area pulses of coherent light through a resonant medium,” Phys. Rev. A 1(6), 1604–1611 (1970). [CrossRef]
  32. B. K. P. Scaife, Principles of Dielectrics, Oxford University Press, Oxford, 1989.
  33. A. L. Gutman, Passage of short pulse throughout oscillating circuit with dielectric in condenser. Ultra-Wideband, Short-Pulse Electromagnetics 4, Kluwer Academic / Plenum Publishers, New York, 1999.
  34. V. V. Daniel, Dielectric Relaxation. Academic Press, New York, 1967.
  35. A. B. Shvartsburg, Optics of nonstationary media, Physics – Uspekhi, Vol. 48, No. 8, 797–823, 2005.
  36. A. B. Shvartsburg, G. Petite. Progress in Optics, Vol. 44 (Ed. E Wolf), p. 143, Elsevier Sci, 2002.
  37. K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics,” J. Chem. Phys. 9(4), 341–351 (1941). [CrossRef]
  38. A. B. Djurišic and E. H. Li, “Modeling the index of refraction of insulating solids with a modified Lorentz oscillator model,” Appl. Opt. 37(22), 5291 (1998). [CrossRef]
  39. S. P. Blanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. 10(10), (1993).
  40. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989). [CrossRef]
  41. C. B. Schaffer, Interaction of femtosecond laser pulses with transparent materials, Ph.D. Thesis. Harvard University, May 2001.
  42. K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. A 6(9), 1394–1420 (1989). [CrossRef]
  43. L. N. Hand, and J. D. Finch, Analytical Mechanics. Cambridge University Press, 7th edition, Cambridge, 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited