OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15169–15173

Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers

Hideaki Takashima, Takeshi Asai, Kiyota Toubaru, Masazumi Fujiwara, Keiji Sasaki, and Shigeki Takeuchi  »View Author Affiliations


Optics Express, Vol. 18, Issue 14, pp. 15169-15173 (2010)
http://dx.doi.org/10.1364/OE.18.015169


View Full Text Article

Enhanced HTML    Acrobat PDF (1400 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coupling of a microsphere resonator to a tapered fiber was demonstrated at cryogenic temperatures (8 - 13 K) and investigated with a probe laser light whose frequency around the zero phonon line of nitrogen vacancy centers in diamond (638 nm). For this purpose, a liquid-helium-flow cryostat with a large sample chamber is developed and a resonance dip with a Q of 2 × 106 is observed. The resonance frequency and the coupling condition are found to be stable for a period of one hour.

© 2010 OSA

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: May 25, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: June 24, 2010
Published: June 30, 2010

Citation
Hideaki Takashima, Takeshi Asai, Kiyota Toubaru, Masazumi Fujiwara, Keiji Sasaki, and Shigeki Takeuchi, "Fiber-microsphere system at cryogenic temperatures toward cavity QED using diamond NV centers," Opt. Express 18, 15169-15173 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-14-15169


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996). [CrossRef] [PubMed]
  2. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997). [CrossRef] [PubMed]
  3. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25(4), 260–262 (2000). [CrossRef]
  4. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000). [CrossRef]
  5. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003). [CrossRef] [PubMed]
  6. J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006). [CrossRef]
  7. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007). [CrossRef]
  8. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008). [CrossRef]
  9. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002). [CrossRef]
  10. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998). [CrossRef]
  11. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  12. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  13. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007). [CrossRef]
  14. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009). [CrossRef]
  15. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005). [CrossRef]
  16. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006). [CrossRef]
  17. O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009). [CrossRef]
  18. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited