OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15174–15182

Protease detection using a porous silicon based Bloch surface wave optical biosensor

Hong Qiao, Bin Guan, J. Justin Gooding, and Peter J Reece  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15174-15182 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article we present an optical biosensor for label-free detection of trace levels of protease activity. The scheme is based on surface functionalized porous silicon optical structures which supports optical Bloch surface modes. The optical structure provides a resonant optical mode for high sensitivity detection and open access of the sensing layer to the target enzyme. Protease detection is based on the digestion of gelatin, covalently attached inside the pore space, resulting in a spectral blue-shift of the optical mode. Monitoring of spatially separated resonant optical modes is used to eliminate optical response from nonspecific adsorption.

© 2010 OSA

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:

Original Manuscript: May 6, 2010
Revised Manuscript: June 12, 2010
Manuscript Accepted: June 24, 2010
Published: June 30, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Hong Qiao, Bin Guan, J. Justin Gooding, and Peter J Reece, "Protease detection using a porous silicon based Bloch surface wave optical biosensor," Opt. Express 18, 15174-15182 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997). [CrossRef] [PubMed]
  2. S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007). [CrossRef]
  3. P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002). [CrossRef]
  4. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006). [CrossRef]
  5. J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999). [CrossRef]
  6. K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009). [CrossRef]
  7. W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004). [CrossRef]
  8. H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007). [CrossRef] [PubMed]
  9. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005). [CrossRef]
  10. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010). [CrossRef] [PubMed]
  11. M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006). [CrossRef] [PubMed]
  12. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007). [CrossRef]
  13. E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006). [CrossRef]
  14. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007). [CrossRef]
  15. K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009). [CrossRef] [PubMed]
  16. A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008). [CrossRef]
  17. T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008). [CrossRef]
  18. T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006). [CrossRef]
  19. K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007). [CrossRef] [PubMed]
  20. E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited