OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 14 — Jul. 5, 2010
  • pp: 15207–15215

Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy

Rajesh N. Raman, Manyalibo J. Matthews, John J. Adams, and Stavros G. Demos  »View Author Affiliations

Optics Express, Vol. 18, Issue 14, pp. 15207-15215 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2458 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO2 laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO2 laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica (~1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

© 2010 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(180.2520) Microscopy : Fluorescence microscopy
(240.6490) Optics at surfaces : Spectroscopy, surface
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: April 26, 2010
Revised Manuscript: May 30, 2010
Manuscript Accepted: June 3, 2010
Published: July 1, 2010

Rajesh N. Raman, Manyalibo J. Matthews, John J. Adams, and Stavros G. Demos, "Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy," Opt. Express 18, 15207-15215 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004). [CrossRef] [PubMed]
  2. L. Skuja, “The nature of optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998). [CrossRef]
  3. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1444 . [PubMed]
  4. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003). [CrossRef]
  5. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006). [CrossRef]
  6. S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008). [CrossRef]
  7. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009). [CrossRef]
  8. M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001). [CrossRef]
  9. H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009). [CrossRef]
  10. R. A. House II, J. R. Bettis, and A. H. Guenther, “Efficacy of ion polishing optical surfaces,” Appl. Opt. 16(6), 1486–1488 (1977). [CrossRef] [PubMed]
  11. T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).
  12. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002). [CrossRef]
  13. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-5-3543 . [CrossRef] [PubMed]
  14. V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).
  15. C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000). [CrossRef]
  16. R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007). [CrossRef]
  17. P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005). [CrossRef]
  18. R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009). [CrossRef]
  19. S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005). [CrossRef]
  20. M. von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications, (Springer-Verlag, Hiedelberg, Germany, 1998).
  21. S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010). [CrossRef]
  22. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009). [CrossRef]
  23. F. Messina and M. Cannas, “Temperature dependence of the generation and decay of E’ centers induced in silica by 4.7 eV laser radiation,” J. Non-Cryst. Solids 355(18-21), 1038–1041 (2009). [CrossRef]
  24. N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010). [CrossRef]
  25. W. W. Mullins, “Flattening of a Nearly Plane Solid Surface Due to Capillarity,” J. Appl. Phys. 30(1), 77–83 (1959). [CrossRef]
  26. V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).
  27. W. D. Kingery, “Surface Tension of Some Liquid Oxides and Their Temperature Coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959). [CrossRef]
  28. N. Shen, J. D. Bude, T. A. Laurence, W. A. Steele, P. E. Miller, M. D. Feit, L. L. Wong, and T. I. Suratwala, “Isothermal anneal of damage precursors on fused silica surfaces,” submitted.
  29. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited