OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15311–15317

Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications

J. Fatome, S. Pitois, P. Morin, and G. Millot  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15311-15317 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (932 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In many photonics applications, especially in optical fibre based systems, the state of polarization of light remains so far an elusive uncontrolled variable, which can dramatically affect the performances of that systems and which one would like to control as finely as possible. Here, we experimentally demonstrate light-by-light polarization control via a nonlinear effect occurring in single mode optical fibre. We observe a polarization attraction and stabilization of a 10 Gbit/s optical telecommunication signal around 1550 nm. We also validate the potentiality of the device to annihilate very fast nanosecond polarization bursts. This result confirms yet another fascinating possibility to all-optical control the light properties in optical fibre.

© 2010 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 21, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: June 28, 2010
Published: July 2, 2010

J. Fatome, S. Pitois, P. Morin, and G. Millot, "Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications," Opt. Express 18, 15311-15317 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., (Academic Press, New York, 2007).
  2. G. P. Agrawal, Applications of Nonlinear Fiber Optics,” 2nd ed., (Academic Press, New York, 2008).
  3. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12(11), 888–890 (1987). [CrossRef] [PubMed]
  4. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  6. A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981). [CrossRef]
  7. A. Galtarossa, L. Palmieri, and A. Pizzinat, “Optimized Spinning Design for Low PMD Fibers: An Analytical Approach,” J. Lightwave Technol. 19(10), 1502–1512 (2001). [CrossRef]
  8. I. P. Kaminow, and T. Li, Optical fiber Telecommunications IV-B Systems and Impairments, 4th ed., (Academic Press, San Diego, 2002).
  9. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986). [CrossRef]
  10. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000). [CrossRef] [PubMed]
  11. J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002). [CrossRef]
  12. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997). [CrossRef]
  13. M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiberoptic systems” IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 413–414 (2005).
  14. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008). [CrossRef]
  15. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  16. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” J. Lightwave Technol. 18(10), 1402–1411 (2000). [CrossRef]
  17. N. Hitoshi, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express 12(26), 6606–6614 (2004). [CrossRef] [PubMed]
  18. H. C. Lefevre, “Single-Mode Fibre Fractional Wave Devices and Polarisation Controllers,” Electron. Lett. 16(20), 778–780 (1980). [CrossRef]
  19. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006). [CrossRef]
  20. B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008). [CrossRef]
  21. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17(2), 947–955 (2009). [CrossRef] [PubMed]
  22. L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification”, in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.
  23. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008). [CrossRef] [PubMed]
  24. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17(15), 12612–12618 (2009). [CrossRef] [PubMed]
  25. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000). [CrossRef]
  26. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18(4), 432–443 (2001). [CrossRef]
  27. A. Picozzi, “Spontaneous polarization induced by natural thermalization of incoherent light,” Opt. Express 16(22), 17171–17185 (2008). [CrossRef] [PubMed]
  28. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010). [CrossRef] [PubMed]
  29. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29(6), 599–601 (2004). [CrossRef] [PubMed]
  30. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited