OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15383–15388

Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling

Yongqin Yu, Xuejin Li, Xueming Hong, Yuanlong Deng, Kuiyan Song, Youfu Geng, Huifeng Wei, and Weijun Tong  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15383-15388 (2010)
http://dx.doi.org/10.1364/OE.18.015383


View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a novel photonic crystal fiber (PCF) temperature sensor that is based on intensity modulation and liquid ethanol filling of air holes with index-guiding PCF. The mode field, the effective refractive index and the confinement loss of PCF were all found to become highly temperature-dependent when the thermo-optic coefficient of the liquid ethanol used is higher than that of silicon dioxide and this temperature dependence is an increasing function of the d/Λ ratio and the input wavelength. All the experiments and simulations are discussed in this paper and the temperature sensitivity of transmission power was experimentally determined to be 0.315 dB/°C for a 10-cm long PCF.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1150) Optical devices : All-optical devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: May 24, 2010
Revised Manuscript: June 23, 2010
Manuscript Accepted: June 25, 2010
Published: July 2, 2010

Citation
Yongqin Yu, Xuejin Li, Xueming Hong, Yuanlong Deng, Kuiyan Song, Youfu Geng, Huifeng Wei, and Weijun Tong, "Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling," Opt. Express 18, 15383-15388 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  5. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004). [CrossRef]
  6. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, “Sensitivity of holey fiber based sensors,” in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals, 340–343 (2003).
  7. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-9-13-698 . [CrossRef] [PubMed]
  8. O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008). [CrossRef]
  9. W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007). [CrossRef]
  10. A. Michie, J. Canning, K. Lyytikäinen, M. Aslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fibre,” Opt. Express 12(21), 5160–5165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-21-5160 . [CrossRef] [PubMed]
  11. R. T. Bise, R. S. Windeler, K. S. Kranz, et al. “Tunable photonic band gap fiber,” OFC 2002, California, USA, 466–468 (2002).
  12. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-20-2589 . [CrossRef] [PubMed]
  13. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004). [CrossRef]
  14. M. W. Haakestad, M. D. Nielsen, and ., “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005). [CrossRef]
  15. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-24-5857 . [CrossRef] [PubMed]
  16. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).
  17. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited