OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15389–15398

Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs

Masanobu Iwanaga  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15389-15398 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant electromagnetic fields in stacked complementary plasmonic crystal slabs (sc-PlCSs) are numerically explored in subwavelength dimensions. It is found that the local plasmon resonances in the sc-PlCSs are composite states of locally enhanced electric and magnetic fields. Two sc-PlCSs are analyzed in this paper and it is shown that each sc-PlCS realizes a resonant electromagnetic state suggested by one of Maxwell equations. It is moreover clarified that the local plasmons open efficient paths of Poynting flux, those result in high-contrast polarized transmission.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Physical Optics

Original Manuscript: May 24, 2010
Revised Manuscript: June 29, 2010
Manuscript Accepted: June 29, 2010
Published: July 2, 2010

Masanobu Iwanaga, "Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs," Opt. Express 18, 15389-15398 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  3. W. A. Murray, and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007). [CrossRef]
  4. C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007) (and references therein). [CrossRef] [PubMed]
  5. B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein). [CrossRef]
  6. W.-M. Que, and G. Kirczenow, “Theory of plasmons in lateral multiwire superlattices,” Phys. Rev. B 37, 7153–7156 (1988). [CrossRef]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008). [CrossRef] [PubMed]
  8. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009). [CrossRef]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef] [PubMed]
  10. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006). [CrossRef] [PubMed]
  11. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave propagation rotation with double layered metal grating of complementary chiral patterns,” Opt. Express 15, 11117–11125 (2007). [CrossRef] [PubMed]
  12. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008). [CrossRef] [PubMed]
  13. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009). [CrossRef]
  14. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009). [CrossRef] [PubMed]
  15. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Sterometamaterials,” Nat. Photonics 3, 157–162 (2009). [CrossRef]
  16. M. Iwanaga, “Optically deep asymmetric one-dimensional plasmonic crystal slabs: Genetic algorithm approach,” J. Opt. Soc. Am. B 26, 1111–1118 (2009). [CrossRef]
  17. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009). [CrossRef] [PubMed]
  18. M. Iwanaga, “Subwavelength orthogonal polarization rotator,” Opt. Lett. 35, 109–111 (2010). [CrossRef] [PubMed]
  19. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010). [CrossRef]
  20. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006). [CrossRef] [PubMed]
  21. L. Wang, and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 216105 (2007).
  22. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef] [PubMed]
  23. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16, 7756–7766 (2008). [CrossRef] [PubMed]
  24. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  25. L. Li, “Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  26. A. D. Rakić, A. B. Djurušić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  27. COMSOL Multiphysics, http://www.comsol.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited