OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15408–15418

Extremely large-mode-area photonic crystal fibre with low bending loss

Marek Napierała, Tomasz Nasiłowski, Elżbieta Bereś-Pawlik, Francis Berghmans, Jan Wójcik, and Hugo Thienpont  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15408-15418 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1656 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the design of a novel flexible very large mode area photonic crystal fibre for short pulse high peak power fibre laser and beam delivery applications. This fibre has an extremely large mode area exceeding 2500 µm2 when kept straight and over 1000 µm2 when bent over a 10 cm radius at a wavelength of 1064 nm. In addition our fibre exhibits very small fundamental mode bending loss below 10−2 dB/m. The large difference between the propagation loss levels of fundamental and higher order modes forces efficient single-mode guidance in the fibre core while bent. This allows using the fibre to build compact high power laser systems. The paper further explores the major features of this fibre including: the dependence of the mode field area on the fibre core shape, the influence of the bending radius and of the bending direction as well as the impact of manufacturing tolerances on the fibre specifications.

© 2010 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 1, 2010
Revised Manuscript: April 15, 2010
Manuscript Accepted: May 3, 2010
Published: July 6, 2010

Marek Napierała, Tomasz Nasiłowski, Elżbieta Bereś-Pawlik, Francis Berghmans, Jan Wójcik, and Hugo Thienpont, "Extremely large-mode-area photonic crystal fibre with low bending loss," Opt. Express 18, 15408-15418 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6088 . [CrossRef] [PubMed]
  2. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30(20), 2754–2756 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-20-2754 . [CrossRef] [PubMed]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 . [CrossRef] [PubMed]
  4. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005). [CrossRef]
  5. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-12-4729 . [CrossRef]
  6. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres, (Kluwer Academic Publishers, Boston, MA, 2003)
  7. T. W. Wu, L. Dong, and H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4278 . [CrossRef] [PubMed]
  8. B. G. Ward, “Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture,” Opt. Express 16(12), 8532–8548 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8532 . [CrossRef] [PubMed]
  9. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1794 . [CrossRef] [PubMed]
  10. http://www.lumerical.com/mode.php
  11. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers,” Opt. Express 10(1), 54–59 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-1-54 . [PubMed]
  12. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13547 . [CrossRef] [PubMed]
  13. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 . [CrossRef] [PubMed]
  14. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7342 . [CrossRef] [PubMed]
  15. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-69 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited