OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15448–15460

Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor

Kevin Murphy, Daniel Burke, Nicholas Devaney, and Chris Dainty  »View Author Affiliations

Optics Express, Vol. 18, Issue 15, pp. 15448-15460 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laboratory experiments are carried out to detect optical vortices in conditions typical of those experienced when a laser beam is propagated through the atmosphere. A Spatial Light Modulator (SLM) is used to mimic atmospheric turbulence and a Shack-Hartmann wavefront sensor is utilised to measure the slopes of the wavefront surface. A matched filter algorithm determines the positions of the Shack-Hartmann spot centroids more robustly than a centroiding algorithm. The slope discrepancy is then obtained by taking the slopes measured by the wavefront sensor away from the slopes calculated from a least squares reconstruction of the phase. The slope discrepancy field is used as an input to the branch point potential method to find if a vortex is present, and if so to give its position and sign. The use of the slope discrepancy technique greatly improves the detection rate of the branch point potential method. This work shows the first time the branch point potential method has been used to detect optical vortices in an experimental setup.

© 2010 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(080.4865) Geometric optics : Optical vortices

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: May 17, 2010
Revised Manuscript: June 15, 2010
Manuscript Accepted: June 23, 2010
Published: July 6, 2010

Kevin Murphy, Daniel Burke, Nicholas Devaney, and Chris Dainty, "Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor," Opt. Express 18, 15448-15460 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974). [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef] [PubMed]
  3. G. Gibson, J. Courtial, and M. J. Padgett, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef] [PubMed]
  4. F. S. Roux, “Dynamical behavior of optical vortices,” J. Opt. Soc. Am. B 12, 1215–1221 (1995). [CrossRef]
  5. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef] [PubMed]
  6. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence, Laser and Optical Science and Technology (CRC Press, 1996).
  7. R. Mackey and C. Dainty, “Adaptive optics correction over a 3km near horizontal path,” Proc. SPIE 7108, 1–9 (2008).
  8. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, and B. Y. Zel’dovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. A 73, 525–528 (1983). [CrossRef]
  9. C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Barclay, and J. Herrmann, “Atmospheric compensation experiments in strong-scintillation conditions,” Appl. Opt. 34, 2081–2088 (1995). [CrossRef] [PubMed]
  10. J. D. Barchers, D. L. Fried, and D. J. Link, “Evaluation of the performance of Hartmann sensors in strong scintillation,” Appl. Opt. 41, 1012–1021 (2002). [CrossRef] [PubMed]
  11. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998). [CrossRef]
  12. M. C. Roggemann and D. J. Lee, “Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere,” Appl. Opt. 37, 4577–4585 (1998). [CrossRef]
  13. D. L. Fried, “Adaptive optics wave function reconstruction and phase unwrapping when branch points are present,” Opt. Commun. 200, 43–72 (2001). [CrossRef]
  14. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley-InterScience, 1998).
  15. F. A. Starikov, V. P. Aksenova, V. V. Atuchind, I. V. Izmailova, F. Y. Kaneva, G. G. Kochemasov, A. V. Kudryashovb, S. M. Kulikov, Y. I. Malakhovc, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, I. S. Soldatenkovd, and S. A. Sukharev, “Wave front sensing of an optical vortex and its correction in the close-loop adaptive system with bimorph mirror,” Proc. SPIE 6747, 1–8 (2007).
  16. F. A. Starikov, G. G. Kochemasov, M. O. Koltygin, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror,” Opt. Lett. 34, 2264–2266 (2009). [CrossRef] [PubMed]
  17. V. E. ZetterlindIII, “Distributed beacon requirements for branch point tolerant laser beam compensation in extended atmospheric turbulence,” Master’s thesis, Air Force Institute of Technology (2002).
  18. K. Murphy, R. Mackey, and C. Dainty, “Branch point detection and correction using the branch point potential method,” Proc. SPIE 695105, 1–9 (2008).
  19. K. Murphy, R. Mackey, and C. Dainty, “Experimental detection of phase singularities using a Shack-Hartmann wavefront sensor,” Proc. SPIE 74760O, 1–9 (2009).
  20. E. O. Le Bigot, W. J. Wild, and E. J. Kibblewhite, “Reconstruction of discontinuous light-phase functions,” Opt. Lett. 23, 10–12 (1998). [CrossRef]
  21. E. O. Le Bigot and W. J. Wild, “Theory of branch-point detection and its implementation,” J. Opt. Soc. Am. A 16, 1724–1729 (1999). [CrossRef]
  22. W. J. Wild and E. O. Le Bigot, “Rapid and robust detection of branch points from wave-front gradients,” Opt. Lett. 24, 190–192 (1999). [CrossRef]
  23. G. A. Tyler, “Reconstruction and assessment of the least-squares and slope discrepancy components of the phase,” J. Opt. Soc. Am. A 17, 1828–1839 (2000). [CrossRef]
  24. H. H. Barrett, K. J. Myers, M. N. Devaney, and J. C. Dainty, “Objective assessment of image quality. IV. Application to adaptive optics,” J. Opt. Soc. Am. A 23, 3080–3105 (2006). [CrossRef]
  25. D. Burke, S. Gladysz, L. Roberts, N. Devaney, and C. Dainty, “An Improved Technique for the Photometry and Astrometry of Faint Companions,” Publ. Astron. Soc. Pac. 121, 767–777 (2009). [CrossRef]
  26. H. H. Barrett and K. Myres, Foundations of Image Science (Weily Series in Pure and Applied Optics, 2004).
  27. L. Caucci, H. H. Barrett, and J. J. Rodriguez, “Spatio-temporal hotelling observer for signal detection from image sequences,” Opt. Express 17, 10946–10958 (2009). [CrossRef] [PubMed]
  28. L. A. Poyneer, “Scene-based Shack-Hartmann wave-front sensing: analysis and simulation,” Appl. Opt. 42, 5807–5815 (2003). [CrossRef] [PubMed]
  29. C. Leroux and C. Dainty, “Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye,” Opt. Express 18, 1197–1206 (2010). [CrossRef] [PubMed]
  30. L. Caucci, H. H. Barrett, N. Devaney, and J. J. Rodríguez, “Application of the hotelling and ideal observers to detection and localization of exoplanets,” J. Opt. Soc. Am. A 24, B13–B24 (2007). [CrossRef]
  31. L. Caucci, H. H. Barrett, N. Devaney, and J. J. Rodríguez, “Statistical decision theory and adaptive optics: A rigorous approach to exoplanet detection,” in “Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings,” (OSA, 2007), ATuA5.
  32. M. Chen, F. S. Roux, and J. C. Olivier, “Detection of phase singularities with a Shack-Hartmann wavefront sensor,” J. Opt. Soc. Am. A 24, 1994–2002 (2007). [CrossRef]
  33. J. M. Martin and S. M. Flatte, “Simulation of point-source scintillation through three-dimensional random media,” J. Opt. Soc. Am. A 7, 838–847 (1990). [CrossRef]
  34. R. A. Johnston;/[p and R. G. Lane, “Modeling scintillation from an aperiodic kolmogorov phase screen,” Appl. Opt. 39, 4761–4769 (2000). [CrossRef]
  35. M. A. A. Neil, M. J. Booth, and T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849–1851 (1998). [CrossRef]
  36. M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197, 219–223 (2000). [CrossRef] [PubMed]
  37. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Publications, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited