OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15461–15466

1550 nm high contrast grating VCSEL

Christopher Chase, Yi Rao, Werner Hofmann, and Connie J. Chang-Hasnain  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15461-15466 (2010)
http://dx.doi.org/10.1364/OE.18.015461


View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an electrically pumped high contrast grating (HCG) VCSEL operating at 1550 nm incorporating a proton implant-defined aperture. Output powers of >1 mW are obtained at room temperature under continuous wave operation. Devices operate continuous wave at temperatures exceeding 60° C. The novel device design, which is grown in a single epitaxy step, may enable lower cost long wavelength VCSELs.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Optoelectronics

History
Original Manuscript: June 2, 2010
Revised Manuscript: June 24, 2010
Manuscript Accepted: June 24, 2010
Published: July 6, 2010

Citation
Christopher Chase, Yi Rao, Werner Hofmann, and Connie J. Chang-Hasnain, "1550 nm high contrast grating VCSEL," Opt. Express 18, 15461-15466 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000). [CrossRef]
  2. M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, “CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55 µm,” Opt. Lett. 31(21), 3170–3172 (2006). [CrossRef] [PubMed]
  3. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000). [CrossRef]
  4. W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000). [CrossRef]
  5. S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001). [CrossRef]
  6. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005). [CrossRef]
  7. A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004). [CrossRef]
  8. C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004). [CrossRef]
  9. M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007). [CrossRef]
  10. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009). [CrossRef]
  11. A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006). [CrossRef]
  12. M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010). [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008). [CrossRef]
  14. C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009). [CrossRef]
  15. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010). [CrossRef] [PubMed]
  16. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010). [CrossRef]
  17. P. Gilet, N. Olivier, P. Grosse, K. Gilbert, A. Chelnokov, I. Chung, and J. Mørk, “High-index-contrast subwavelength grating VCSEL,” in Vertical-Cavity Surface-Emitting Lasers XIV, J. K. Guenter and K. D. Choquette, eds. (SPIE, 2010), Vol. 7615, p. 76150J.
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited