OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15475–15483

Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

Xiaomin Liu, Jesper Lægsgaard, and Dmitry Turchinovich  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15475-15483 (2010)
http://dx.doi.org/10.1364/OE.18.015475


View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A self-starting, passively stabilized, monolithic all-polarization-maintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low-nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards mechanical disturbances, and maintains stable modelocking in the temperature range of at least 10 – 40 °C.

© 2010 Optical Society of America

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.5520) Ultrafast optics : Pulse compression
(140.3425) Lasers and laser optics : Laser stabilization
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 16, 2010
Revised Manuscript: May 5, 2010
Manuscript Accepted: July 1, 2010
Published: July 7, 2010

Citation
Xiaomin Liu, Jesper Lægsgaard, and Dmitry Turchinovich, "Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers," Opt. Express 18, 15475-15483 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kieu, W. Renninger, A. Chong, and F. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009). [CrossRef] [PubMed]
  2. D. Turchinovich, X. Liu, and J. Lægsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008). [CrossRef] [PubMed]
  3. J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008). [CrossRef]
  4. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332–3337 (2003). [CrossRef] [PubMed]
  5. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000). [CrossRef] [PubMed]
  6. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1502 (2002). [PubMed]
  7. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 m using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063–6068 (2006). [CrossRef] [PubMed]
  8. http://www.batop.de/products/saturable-absorber/saturable-absorber-mirror/data-sheet/saturable-absorbermirror-1040nm/saturable-absorber-mirror-SAM-1040-40-500fs.pdf
  9. http://www.nufern.com/fiber detail.php/84.
  10. J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, “Polarization maintaining hybrid TIR/bandgap all-solid photonic crystal fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThV1.
  11. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express 16, 13657–13662 (2008). [CrossRef] [PubMed]
  12. J. Y. Lee, and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006). [CrossRef] [PubMed]
  13. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995). [CrossRef]
  14. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997). [CrossRef]
  15. X. Liu, J. Lægsgaard, and D. Turchinovich, “Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber,” Opt. Lett. 35, 913–915 (2010). [CrossRef] [PubMed]
  16. http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf
  17. http://www.crystal-fibre.com/datasheets/HC-1060-02.pdf
  18. J. T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express 16, 9986–9995 (2008). [CrossRef] [PubMed]
  19. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980). [CrossRef]
  20. J. Lægsgaard, and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628–9644 (2008). [CrossRef] [PubMed]
  21. P. J. Roberts, private communication.
  22. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007). [CrossRef]
  23. J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002). [CrossRef]
  24. E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005). [CrossRef]
  25. H. Tu, and S. A. Boppart, “Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy,” Proc. SPIE 7569, 75692CD-1–9 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited